18.1勾股定理.ppt_第1页
18.1勾股定理.ppt_第2页
18.1勾股定理.ppt_第3页
18.1勾股定理.ppt_第4页
18.1勾股定理.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、,读一读 我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由三国时期的数学家赵爽在为周髀算经作法时给出的.图1-2是在北京召开的2002年国际数学家大会(TCM2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.,图1-1,图1-2,18.1勾股定理,SLQ,在中国古代大约是战国时期西汉的数学著作周髀算经中记录着商高同周公的一段对话。商高说:“故折矩,勾广三,股修四,经隅五。”即:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”。故称之为“勾股定理”或“商

2、高定理”,史话勾股定理,勾股定理,勾,股,弦,在西方,希腊数学家欧几里德(Euclid,公元前三百年左右)在编著几何原本时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为“毕达哥拉斯定理”,以后就流传开了。,毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。,相传,毕达哥拉斯学派找到了勾股定理的证明后,欣喜若狂,杀了一百头牛祭神,由此,又有“百牛定理”之称。,教学目标,探索直角三角形三边关系,掌握勾股定理的运用思想,发展几何思维。,经历观察与发现直角三角形三边关系的 过程,感受勾股定理的应用意识。,培养严谨的数学学习的态度,体会勾股定理的

3、应用价值。,毕达哥拉斯 (公元前572-前492年), 古希腊著名的哲学家、数学家、天文学家。,相传在2500年前,毕达哥拉斯有一次在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系,我们一起来观察图中的地面,看看能发现什么。,A、B、C的面积有什么关系?,直角三角形三边有什么关系?,让我们一起再探究:等腰直角三角形三边关系,9,9,18,4,4,8,分“割”成若干个直角边为整数的三角形,(单位面积),(单位面积),把C“补” 成边长为6的正方形面积的一半,SA+SB=SC,4,4,8,两直角边的平方和 等于斜边的平方,2观察右边两个图并填写下表:,16,9,25,4

4、,9,13,你是怎样得到表中的结果的?与同伴交流交流,做 一 做,3三个正方形A,B,C面积之间有什么关系?,SA+SB=SC,即:两条直角边上的正方形面积之和等于斜边上的正方形的面积,议 一 议,a,c,b,Sa+Sb=Sc,设:直角三角形的三边长分别是a、b、c,猜想:两直角边a、b与斜边c 之间的关系?,a2+b2=c2,a,b,c,c2=a2 + b2,结论变形,赵爽弦图的证法,化简得: c2 =a2+ b2,8,15,A,49,B,2,1.求下列图中字母所代表的正方形的面积:,学以致用,做一做,结论:,S1+S2+S3+S4,=S5+S6,=S7,学海无涯,如图,所有的四边形都是正方

5、形,所有的三角形都是直角三角形,其中最大的正方形E的边长为7cm,求正方形A,B,C,D的面积的和,S1,S2,解: SE= 49,S1=SA+SB,S2=SC+SD, SA+SB+SC+SD = S1+S2 = SE = 49,美丽的勾股树,2.求出下列直角三角形中未知边的长度,5,x,13,学以致用,做一做,解:(1)在RtABC中,由勾股定理得:AB2=AC2+BC2,X2 =36+64,x2 =100,x2=62+82, x=10,x0,x2+52=132,x2=132-52,x2=144, x=12,(2)在RtABC中,由勾股定理:AB2+AC2=BC2,x0,A,C,B,A,C,

6、B,生活中的数学问题,一个门框的尺寸如图所示,一块长m,宽.m的薄木板能否从门框内通过?为什么?,2m,1m,探究1,2m,1m,分析,连结AC,在RtABC中,根据勾股定理: 因此, 因为AC大于木板的宽, 所以木板能从门框内通过。,1.在ABC中, C=90,a=6,b=8, 则c=,2.在ABC中, a=6,b=8,试求第三边c的值,10,练一练,3.在一个直角三角形中, 两边长分别为6、 8,则第三边的长为_,10,练一练,或,5. 如图1.1-1,求图中字母M所代表的正方形的面积. 图1.1-1 图1.1-2 6. 如图1.1-2,在四边形ABCD中, BAD=90, CBD=90,AD=4,AB=3,BC=12,求正方形DCEF 的面积.,例3 飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩5000米,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论