《三角形的初步知识》总复习_第1页
《三角形的初步知识》总复习_第2页
《三角形的初步知识》总复习_第3页
《三角形的初步知识》总复习_第4页
《三角形的初步知识》总复习_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、三角形的初步知识总复习,三角形的基本要素,三角形的任何一边的长_其余两边长度的和,_其余两边长度的差。,小于,大于,已知在 ABC中,AC=2,BC=7,且周长是偶数,求AB边的长。,三角形三个内角和等于_。,180o,三角形的一个外角等于_。,和它不相邻的两个内角的和,三角形的基本要素,A,B,C,D,已知 ABC如图所示:,求 和 的度数。,已知在 ABC中,,此三角形按角分类应为_三角形。,如果一个三角形的一个外角小于和它相邻的内角,那么这个三角形是( ),A、直角三角形 B、锐角三角形 C、钝角三角形 D、锐角三角形或钝角三角形,角平分线上的点到_ 相等。,角的两边的距离,中垂线上的点

2、到_相等。,线段的两个端点的距离,三角形的三线,到三角形三个顶点距离相等的点是( ),A、三条高的交点,B、三条中线的交点,C、三条角平分线的交点,D、三条边的中垂线的交点,如图:已知点P为 的平分 线上的一点, 于C, 于D,PC+PD=2,则PD的长为_。,A,O,B,P,C,D,已知,如图,在ABC中,AB=AC,DE垂直平分AB交AC与点D,若AB=5,BC=4,则 BCD的周长为 。,三角形的三线,下列各图中的AD是 ABC的高吗?若不是,请画出正确的图形。,A,B,C,D,A,B,C,D,三角形的( )把三角形分成面积相等的两部分。,A、角平分线 B、高 C、中线 D、中垂线,下列

3、选项正确的是( ),A、三角形的角平分线、中线和高都在三角形内,B、直角三角形的高只有一条,C、三角形的高至少有一条在三角形内,D、钝角三角形的三条高都在三角形外,在等腰三角形的对称轴、三角形的高、三角形的角平分线、线段的中垂线中,属于直线的有( ),A、1个 B、2个 C、2个 D、4个,如图:已知 , , ,求 的度数。,A,B,C,D,E,F,如图: ABC中, 于D, AE为 的平分线,且 , ,求 的度数。,A,B,C,D,E,在 ABC中,已知 , ,BE是AC边上的高,CF是AB边上的高,H是BE和CF的交点,求 、 、 的度数。,A,B,C,E,F,H,全等三角形,_的两个三角

4、形叫做全等三角形。,能够重合,全等三角形的对应边相等,对应角相等。,全等三角形的性质:,如图,已知 , , ,请找出 其余的对应边和对应角。,A,B,C,D,E,如图:,求AF的长。,A,B,C,D,E,F,全等三角形的条件,SSS SAS ASA AAS,全等三角形的条件,SSS SAS ASA AAS,全等三角形的条件,SSS SAS ASA AAS,A,B,C,D,已知AD垂直平分BC,说明AD是 的平分线,全等三角形的条件,SSS SAS ASA AAS,已知M是AB的中点,,说明AC=BD的理由,A,B,C,D,M,如图,已知1=2,3=4,EC=AD,说明:AB=BE。,全等三角形的条件,SSS SAS ASA AAS,全等三角形的条件,SSS SAS ASA AAS,如图 , A=D=90, BE=CF , AC=DE , 说明ABCDFE。,全等三角形的条件,SSS SAS ASA AAS,已知:如图 , AD OB于D , BC OA于C, EO平分 说明:EA=EB,全等三角形的条件,SSS S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论