复杂网络中疾病传播与免疫.ppt_第1页
复杂网络中疾病传播与免疫.ppt_第2页
复杂网络中疾病传播与免疫.ppt_第3页
复杂网络中疾病传播与免疫.ppt_第4页
复杂网络中疾病传播与免疫.ppt_第5页
免费预览已结束,剩余35页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、复杂网络中 疾病传播与免疫,2009-10-31,疾病传播模型的描述,. 模型的传播规则: 初始时随机选择网络中一个或若干节点为染病节点(I),其余为健康节点(S) 在每一个时间步t: 如果一个健康节点具有染病邻居,则它依某 个事先设定的概率变成染病节点,这一概率叫 做染病概率();同时每一个染病节点都依 某个事先设定的痊愈概率()变成健康节点。 在每个时间步,这些演化规则在整个网络中被并行地执行。染病概率越大,痊愈概率越小,疾病就越有可能感染更多的人,因此,定义染病概率和痊愈概率的比值为有效传播率 并用这个参数综合地衡量疾病自身特征。,复杂网络的传播临界值理论 复杂网络的免疫策略与技术,主要

2、内容: 1. 疾病传播的基本知识 2. SIS和SIR传播模型 3. 均匀网络中的SIS模型, WS模型为例进行解析 4.无标度网络中的SIS模型, BA模型为例进行解析,复杂网络的传播临界值理论,1. 疾病传播,I. 传染病:数理学家在研究传播行为时,往往并不区别研究对象,他们把可以在网络中传播开来的东西叫做传染病。 II. 在传播过程中,个体处于三个基本状态: (1) S(susceptible)易感状态:不会传染他人,可能被传染(也就是健康状态) (2) I(infected) 感染状态:已患病,具有传染性 (3) R(removed) 免疫状态:被治愈,具有免疫能力,不具有传染能力,不

3、会再次被感染(移除状态),. 传染病模型 科学家通过用基本状态之间的相互转换来建立不同的传播模型: SIS模型:易染个体被感染后,可以被治愈但无免疫力(还可以再被感染)(感冒等) SIR模型:易染个体被感染后,可以被治愈且有免疫力(不会被感染,也不会感染其它节点,相当于已经从传播网络中被清除了)(天花等) SI模型:易染个体被感染后,不能被治愈(艾滋病等) SIRS模型:易染个体被感染后,可以被治愈且有免疫力,但免疫期是有限的,还会再次回到易染状态。(乙肝?), 感染密度(感染水平或者波及范围)(t) (t):传播过程中,感染节点总数占总节点数的比例。:传播到稳态时( )感染密度的值,称为稳态

4、感染密度。 有效传播率(=/) 非常小(很小,很大),传播达稳态时, 所有节点都会变成健康节点,这种情况下就认为疾病 没有在网络上传播开来,并记该疾病的稳态感染密度 =0。 反之,当足够大时,疾病将一直在网络中存在而不会完全消失,只是染病节点的数目有时多有时少,这时稳态感染水平(波及范围) 0。把稳态感染密度从零向正实数变化的那个点所对应的有效传播率称作传播阈值(临界值) c。它是衡量网络上的传播行为最重要的参量之一。,. 传播模型研究的主要参量,SIS模型传播方程 设s,i分别表示群体中S,I个体所占 的比例,则SIS传播的微分方程组为: SIR模型传播方程 设s,i,r分别表示群体中S,I

5、,R个体所占 的比例,则疾病传播的动力微分方程组为: 注: (1) 传播网络是完全图,但实际网络中,只有接触才能被感染 (2) 并不是对每个节点都一致,而是服从分布 , Newman对其进行了研究。,. 模型传播动力学方程,3. 均匀网络中的SIS模型,. 均匀网络: . 解析模型 三个假设: 均匀混合假设:感染强度和感染个体密度 成比例。即: 和为常数(均匀混合)。不失一般性,可假设=1,因为这只影响疾病传播的时间尺度; 均匀性假设:均匀网络中,每个节点的度都等于网络的平均度; 规模不变假设:假设病毒的时间尺度远小于个体的生命周期,即不考虑个体的出生和自然死亡,运用平均场的方法可得:被感染个

6、体密度(t)的变化率 被感染节点以单位速率恢复健康 单个感染节点产生的新感染节点的平均速度,它与有效传播率、节点的平均度k,健康节点相连概率1-(t)成比例,(其他的高阶校正项忽略了)。,当传播达到稳态时,变化率为0,所以令上式右端为0; 即:-+1-=0 (1-+)=0; (- )=0; 当 时,- 必大于0,所以=0; 当 时,= ; 所以, 即为临界传播值,记 = 。,结论: 在均匀网络中存在一个有限的正的传播临界值c。 如果有效传播率 c,则病毒可以在网络中传播 开来,并最终稳定于 , 此时称网络处于激活相态; 如果有效传播率c,病毒 感染个体数呈指数衰减,无法大 范围传播,最终将不能

7、传播, 此时网络称为吸收相态。,4.无标度网络中的疾病传播,. 无标度网络:具有幂律度分布的网络,即: ; 网络中节点的度没有明显的特征长度 . 解析模型 无标度网络的度分布是呈幂律分布,因而度具有很大的 波动性,定义一个相对感染密度 :度数为k的感染节点 数占总节点数的比例。当t趋于无穷大时,相对稳态感染密 度记为 。 平均感染密度: 稳态平均感染密度:,同样我们能采用MF理论来求 的变化率得:度为k的节点相对感染密度的变化方程为: 被感染个体以单位速率恢复健康 :任意一条给定的边与一个被感染节点相连的概率 单个感染节点产生的新感染节点的密度,根据稳态条件 ,可得: 传播达稳态时, 记为 :

8、给定一条边,这条边指向一个已感染节点的概率 此概率值不依赖于出发点的度,而仅于 有关;并且趋于稳态时, 又是的函数,因此趋于稳态时 可以表示为 。 节点的度越高,被感染的概率越高,下面我们计算 :给定端点的一条边,其另一个端 点为染病节点的概率时,必须考虑到网络的非均匀性。 任意一条给定边指向度为k的节点的概率为 (与度为k节点关联的边数与总边数的比值) 则任意一条给定边指向度为k的感染节点的概率为 从而, (将 的值代入),回忆:传播临界值 必须满足的条件:当 时,可以得到 的一个零解。当 时,可以得到 的一个非零解。 有一个平凡解 如果该方程要存在一个非零稳定解 ,需要满足如下条件: 即有

9、:,结论:对于SF(无标度)网络,节点度数具有很大的浮动性,当 ,导致 ,从而 特别地,作为SF网络的一个典型例子,考虑BA无标度网络。,BA无标度网络的传播临界值,BA无标度网络:(1) 增长特性,(2) 优先连接特性(富者更富,或马太效应) 度分布 ,平均度 其中m是网络最小度 将平均度 ,度分布 ,以及 带入 ,可得:,又因为,化简后得: 当=0时,有 当0时,有 结论: BA无标度网络在SIS模型下的 只要有效传播率0,病毒就能传播开来,并将达到一个稳定感染水平 ,这反映了无标度网络对抵抗病毒的脆弱性,BA网络中,疾病传播的时间演化 N=106,从下至上从0.05到0.065,WS网络

10、与BA网络的比较,总结,1. SIS模型在均匀网络中,存在一个传播临界值 。 当时,疾病在时间演化过程中逐渐衰减,最终被灭; 当时,疾病在时间演化过程中传播开来,并稳定于某一值(稳态感染密度): 2. SIS模型在SF网络中,传播临界值: 只要有效传播率0,病毒就能传播开来,并将达到一稳定感染水平 值: ,这反映了无标度网络对抵抗病毒的脆弱性。,有限规模无标度网络的传播临界值 关联网络的传播临界值 广义复杂网络传播临界值(度分布是幂律分布和指数分布的混合体) ,复杂网络的传播临界值理论 复杂网络的免疫策略与技术,报告内容,主要内容 1. 随机免疫与集中接种 2.目标免疫与优先免疫 3. 熟人免

11、疫与环状接种,免疫策略与技术,随机免疫与集中接种:将所有可能感染的种群集中起来,按照某种概率随机选择种群中的个体进行接种。 (度大节点和度小节点是平等对待) 1992年,Anderson和May人类传染病, Oxford University Press SIS传播方式说明随机免疫,1. 随机免疫(均匀免疫),引入免疫参数g:初始网络中免疫节点数占节点总 数的比例 在平均场理论下可以通系数(1-g)来影响有效传播率,即 用(1-g)来替换代入前面的变换率方程中 (均匀网络,WS) (SF网络,BA),均匀网络(以WS为例) 令上式为0,得:,即:我们需要的免役临界值 显然 ,才有意义。 情况下

12、,如果不加免疫,疾病将传播开来,并稳定于某一值(0);如果加免疫后,只要免疫值 满足: 疾病将不能传播开来,即达到稳态时,0。,. SF网络(以BA为例) SF网络的免疫临界值可由公式 给出,即:,仿真(一),WS模型上随机免疫的效果 表示加入免疫后的稳态感染密度,表示不加免 疫的稳态感染密度(p=1,k=3;=0.25;),结论: 在均匀网络中:只要 ,就可保证疾病不在网络中传播开来;SF网络中:免疫临界值约为,即任给定一值,都需要对网络中的所有个体进行免疫才能使疾病不传播开来。说明随机免疫只对均匀网络有效(有较小的),而对SF网络效果很差( =1)。 原因: 这是由于SF网络是异质网络,节

13、点度呈两极分化,采用随机免疫,哪些最容易传播病毒的节点(度大的节点)不一定获得免疫。所以,如果对SF网络采取随机免疫的策略,需要对网络中几乎所有的节点都实施免疫才能保证最终消灭病毒传染。 因此对SF网络这样的异质网络,普遍认为:随机免疫策略对于无标度网络是无效的!,目标免疫:选取少量度最大的节点进行免疫。(而一旦这些节 点被免疫后,就意味着他们所连的边可以从网络中去除,使得 病毒传播的可能途径大大减少。) 假设对度kkt的节点进行免疫,即有: 引入定义(免疫平均度,免疫二阶矩): p(g):任给一条边,该边指向一个免疫节点的概率。且有: (免疫节点的平均度) (平均度),2.目标免疫(选择免疫

14、),将比例为g的免疫节点看作已从网络中移除,且从这些节点出 发的边也被删除了。则新的度分布: (指向非免疫节点的概率),在SF网络中,有:,特别地,在BA网络情况下:,同样,将 代入t及t 得: 将、代入 式中。对代入后的方程求得一个近似解: 上式表明:即使有效传播率在很大的范围内取值,都可以得到较小的免疫临界值 (对少量的节点进行免疫,即可消除病毒扩散)。,环状接种:隔离或免疫染病个体的所有 (距离为k)邻居 禽流感等 熟人免疫:从群体中以比例p随机选择 个体,再随机选择该个体的一个相邻个体进行免疫 接触追踪:对与有传染性个体的接触 者进行跟踪,然后以一定的概率进行免疫 非典病等 例子 (Huerta和TSimring) T:被监控态 T:被追踪的强度 r:被检查的强度,3.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论