版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2020/8/29,Welcome,1,2020/8/29,请问:金钱豹 能追上小狗吗?为什么?,问 题 情 境:,金钱豹以5m/s的速度追赶一只以2m/s逃跑的小狗,2,2020/8/29,由于大陆和台湾没有直航,因此2006年春节探亲,乘飞机要先从台北到香港,再从香港到上海,这里发生了两次位移。,台北,香港,上海,问 题 情 境:,位移和距离这两个量有什么不同?,3,2020/8/29,F=20N,V =20km/h,(2)(3)都是有大小和方向的量,m=20kg,(1),(2),(3),观察下述三个量有什么区别?,4,2020/8/29,向量的概念及表示,资中县第一中学高一数学组,202
2、0年8月29日星期六10时29分36秒,5,2020/8/29,二、向量的表示方法,一、向量的定义,既有大小又有方向的量,6,2020/8/29,我们现在研究的向量,与起点无关,用有向线段表示向量时,起点可以取任意位置。所以数学中的向量也叫 自由向量,如图:他们都表示同一个向量。,不是,温度只有大小,没有方向。,不是,方向不同,说明1:,小试牛刀,7,2020/8/29,有向线段与向量的区别:,有向线段:有固定起点、大小、方向,向量:可选任意点作为向量的起点、有大小、有方向。,说明2:,8,2020/8/29,单位向量大小为1,方向 不一定相同。,:长度为 1 个单位长度的向量。,说明3:两个
3、特殊向量,思考:平面直角坐标系内,起点在原点的单位向量, 它们的终点的轨迹是什么图形?,9,2020/8/29,三:向量之间的关系,3.平行向量的定义:,方向相同或相反的非零向量叫做平行向量,我们规定零向量与任一向量平行,两向量的平行与平面几何里两线段的平行有什么区别?,10,2020/8/29,4.相等向量的定义:,长度相等且方向相同的向量,相反向量的定义:,三:向量之间的关系,11,2020/8/29,任意一组平行向量都可以平移到同一直线上,三:向量之间的关系,5.共线向量与平行向量的关系:,平行向量就是共线向量,两向量的共线与平面几何里两线段的共线是否一样? 为什么?,说明:在平行向量、
4、共线向量、相等向量的概念中应注意零向量的特殊性,12,2020/8/29,例1:已知O为正六边形ABCDEF的中心, 在图中所标出的向量中:,解:,13,2020/8/29,分别以图中的格点为起点和终点作向量,,14,2020/8/29,合作探究:,共有2种不同的模,共有8种不同的向量,15,2020/8/29,若改为12的方格纸中的格点为起点和终点的所有向量中,可得到多少种不同的模?多少种不同的向量呢?,变式训练,共有4种不同的模,共有14种不同的向量,16,2020/8/29,题:,题:,题:,欢迎来到:过关竞技场,17,2020/8/29,练习: 1、单位向量是否一定相等? 2、单位向量
5、的大小是否一定相等?,BACK,不一定,一定,18,2020/8/29,练习: 1、平行向量是否一定方向相同? 2、不相等的向量一定不平行吗?,BACK,不一定,不一定,19,2020/8/29,BACK,练习 1、与零向量相等的向量一定是什么向量? 2、与任意向量都平行的向量是什么向量?,零向量,零向量,20,2020/8/29,BACK,练习 1、若两个向量在同一直线上,则这两个 向量是什么向量? 2、共线向量一定在一条直线上吗?,共线向量 或者说平行向量,不一定,21,2020/8/29,BACK,练习: 在质量、重力、速度、加速度、身高、面积、体积这些量中,哪些是数量?哪些是向量?,数
6、量有:质量、身高、面积、体积,向量有:重力、速度、加速度,22,2020/8/29,在下列结论中,哪些是正确的? (1)如果两个向量相等,那么它们的起点和终 点分别重合; (2)模相等的两个平行向量是相等的向量; (3)如果两个向量是单位向量,那么它们相等; (4)两个相等向量的模相等。,正确的有:(4),23,2020/8/29,练习: 1.设O为正ABC的中心,则向量AO,BO,CO是 ( ) A.相等向量 B.模相等的向量 C.共线向量 D.共起点的向量,B,A,B,C,O,24,2020/8/29,BACK,练习: 命题:“a=b”成立,则“ a = b ”一定成 立,25,2020/
7、8/29,BACK,练习: 1.已知a、b为不共线的非零向量,且 存在向量 c,使 c a, c b, 则 c =_,26,2020/8/29,BACK,练习: 1.与非零向量 a 平行的向量中, 不相等的单位向量有_个.,2,27,2020/8/29,练习:如图,EF是ABC的中位线,AD是BC 边上的中 线,在以A、B、C、D、E、F为端点的有向线 段表示的向量中请分别写出 (1)与向量CD共线的向量有_个, 分别是_; (2)与向量DF的模一定相等的向 量有_个,分别是_; (3)与向量DE相等的向量有_个, 分别是_。,A,B,C,D,E,F,BACK,7,5,2,28,2020/8/
8、29,如图,D、E、F分别是ABC各边上的中点,四边形BCMF是平行四边形,请分别写出: (1)与ED相等的向量; (2)与ED共线的向量; (3)与FE相等的向量; (4)与FE共线的向量。,A,B,C,D,F,E,M,BACK,(1) 3个,(2) 9个,(3) 3个,(4) 11个,29,2020/8/29,课堂小结,30,2020/8/29,向量最初被应用于物理学,被称为矢量很多物理量,如力、速度、位移、电场强度、磁场强度等都是向量。 大约公元前年,古希腊著名学者亚里士多德就知道了力可以表示为向量向量一词来自力学、解析几何中的有向线段。 最先使用有向线段表示向量的是英国大科学家牛顿。,
9、课堂小结,向量及向量符号的由来,31,2020/8/29,空间向量 及其运算,32,2020/8/29,复习回顾: 平面向量,1、定义:,既有大小又有方向的量。,33,2020/8/29,2、平面向量的加法、减法与数乘运算,向量加法的三角形法则,34,2020/8/29,3、平面向量的加法、减法与数乘运算律,35,2020/8/29,推广:,(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;,(2)首尾相接的若干向量若构成一个封闭图 形,则它们的和为零向量。,36,2020/8/29,F3,F3=15N,已知F1=10N,F2=15N,,F1,F2,这三个力两两之间
10、的夹角都为90度,它们的合力的大小为多少N?,这需要进一步来认识空间中的向量,37,2020/8/29,起点,终点,38,2020/8/29,平面向量,概念,加法 减法 数乘 运算,运 算 律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或 平行四边形法则,空间向量及其加减与数乘运算,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,39,2020/8/29,C,A,B,D,40,2020/8/29,平面向量,概念,加法 减法 数乘 运算,运 算 律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或 平行四边形法则,空间
11、向量及其加减与数乘运算,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,41,2020/8/29,O,A,B,C,空间向量的数乘,空间向量的加减法,42,2020/8/29,O,A,B,结论:空间任意两个向量都是共面向量,所以它们可用 同一平面内的两条有向线段表示。 因此凡是涉及空间任意两个向量的问题,平面向量中有 关结论仍适用于它们。,思考:它们确定的平面是否唯一?,思考:空间任意两个向量是否可能异面?,43,2020/8/29,平面向量,概念,加法 减法 数乘 运算,运 算 律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或
12、平行四边形法则,空间向量及其加减与数乘运算,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,加法:三角形法则或 平行四边形法则,减法:三角形法则,数乘:ka,k为正数,负数,零,加法结合律,成立吗?,44,2020/8/29,O,B,C,O,B,C,(平面向量),向量加法结合律在空间中仍成立吗?,A,A,45,2020/8/29,O,A,B,C,O,A,B,C,(空间向量),向量加法结合律:,空间中,46,2020/8/29,推广:,(1)首尾相接的若干向量之和,等于由起始 向量的起点指向末尾向量的终点的向量;,(2)首尾相接的若干向量若构成一
13、个封闭图 形,则它们的和为零向量。,47,2020/8/29,平面向量,概念,加法 减法 数乘 运算,运 算 律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或 平行四边形法则,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,小结,类比思想 数形结合思想,数乘:ka,k为正数,负数,零,48,2020/8/29,例如:,定义:,我们知道平面向量还有数乘运算. 类似地,同样可以定义空间向量的数乘运算,其运算律是否也与平面向量完全相同呢?,49,2020/8/29,显然,空间向量的数乘运算满足分配律及结合律,50,2020/8/29,
14、51,2020/8/29,例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图),52,2020/8/29,A,B,C,D,平行六面体:平行四边形ABCD平移向量 到A1B1C1D1的轨迹所形成的几何体.,记做ABCD-A1B1C1D1,53,2020/8/29,例1:已知平行六面体ABCD-A1B1C1D1,化简下列向量 表达式,并标出化简结果的向量。(如图),G,M,始点相同的三个不共面向量之和,等于以这三个向量 为棱的平行六面体的以公共始点为始点的对角线所示向量,54,2020/8/29,F1,F2,F1=10N,F2=15N,F3=15N,
15、55,2020/8/29,例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。,56,2020/8/29,例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。,57,2020/8/29,例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。,58,2020/8/29,例2:已知平行六面体ABCD-A1B1C1D1, 求满足下列各式的x的值。,59,2020/8/29,A,B,M,C,G,D,练习1,在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简,60,2020/8/29,A,B,M,C,G,D,(2)原式,练习1,在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简,61,202
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国金融出版社有限公司2026校园招聘4人笔试历年典型考点题库附带答案详解
- 秀山土家族苗族自治县2025二季度重庆秀山事业单位招聘132人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 松原市2025年吉林松原市事业单位招聘入伍高校毕业生(11人)笔试历年参考题库典型考点附带答案详解(3卷合一)
- 国家事业单位招聘2025商务部中国国际电子商务中心招聘1人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 北京市2025商务部国际经济合作事务局招聘应届毕业生2人笔试历年参考题库典型考点附带答案详解(3卷合一)
- 2026年毛概期末考试试题库【考点梳理】
- 2025年六安安徽和襄高速公路有限公司招聘费收人员管护队人员192人笔试参考题库附带答案详解
- 2026年反洗钱远程培训终结性考试题库含答案(考试直接用)
- 2026年时事政治测试题库【研优卷】
- 2026年摩托车科目一测试题库及答案(各地真题)
- 固态电池系列之干法电极专题报告:革新技术方兴未艾
- 西游记五庄观课件
- 药品采购部门年度工作汇报
- 2025年幼儿教师之《幼儿游戏与指导》考试题库(附答案)
- 四川佰思格新材料科技有限公司钠离子电池硬碳负极材料生产项目环评报告
- 古代文学史自考课件
- 知道智慧树管理学(浙江财经大学)满分测试答案
- 工地旧木材运输方案(3篇)
- 2025年哈尔滨铁道职业技术学院单招笔试英语试题库含答案解析(5套100道合辑-单选题)
- 企业账期管理暂行办法
- 2025年广西中考英语试卷真题(含答案解析)+听力音频
评论
0/150
提交评论