




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学广角,鸽巢问题,新课标人教版六年级下册,1.理解最简单的“鸽巢问题”及“鸽巢问题”的一般形式。 2. 让学生采用操作的方法进行枚举及假设探究“鸽巢问题”。 3.会用“鸽巢问题”解决简单的实际问题。,学习目标,例1:把4枝铅笔放进3个文具盒中,可以怎么放?,小组合作探究 探究要求:1、小组合作摆一摆,记录你的摆法 2、你们 组有几种摆法(温馨提示:只考虑摆的数量,不考虑摆的顺序),不管怎么放,总有一个文具盒里至少放进2枝铅笔。,请同学们观察不同的摆法,能发现什么?,例题,不管怎么放总有一个文具盒里至少有2枝铅笔。,把这4枝铅笔放进这3个文具盒中,不管怎么放,总有一个文具盒里至少放进2枝铅笔。
2、,鸽巢问题 (也叫“鸽巢原理”),数学小知识:鸽巢问题的由来。 最先发现这个规律的人是谁呢?最先是由19世纪的德国数学家狄里克雷运用于解决数学问题的,后人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫“狄里克雷原理”,又把它叫做“鸽巢原理”,还把它叫做 “抽屉原理”。,把6枝铅笔放进5个文具盒里呢?,拓展,把8枝铅笔放进7个文具盒里呢?,把7枝铅笔放进6个文具盒里呢?,把100枝铅笔放进99个文具盒里呢?,你发现什么?,只要铅笔的枝数比文具盒的数量多1,总有一个盒子里至少有2枝铅笔。,如果放的铅笔数比文具盒的数量多2,多3,多4呢?,思考:,原理1: 把多于n个的物体
3、放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。,鸽巢原理,解决“鸽巢问题”关键是找准哪是物体,哪是抽屉,物体个数抽屉个数,有余数 商+1,无余数 商,总有一个抽屉至 少有()个物体,物体,抽屉,5只鸽子飞回4个鸽笼,至少有2只鸽子飞进同一个鸽笼里,为什么?,解决问题,解决问题,如果一个鸽笼飞进一只鸽子,最多飞进四只鸽子,,剩下一只,要飞进其中的任何一个鸽笼里。,不管怎么飞,至少有2只鸽子飞进同一个鸽笼里。,5只鸽子飞回4个鸽笼,至少有2只鸽子飞进同一个鸽笼里,为什么?,解决问题,5 4 1(只) 1 (只),11 2(只),某学校有31名学生是6月份出生的,那么,其中至少有两名学生的生日是在同一天。,试一试吧!,为什么?,在我们班的任意13人中,至少有几个人的属相相同?想一想,为什么?,猜猜看,从扑克
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度房屋租赁未办理过户手续协议书
- 2025版绿色环保材料配送合同示范文本
- 二零二五年LED显示屏供应商合作协议范本
- 2025版电子商务平台内部保密及数据安全合作协议
- 2025年网络安全检查服务合同范本
- 二零二五年度新能源装备制造厂房租赁合同范本标准
- 二零二五年度农业企业财务外包服务合同助力乡村振兴
- 2025版宾馆餐厅厨房设备维护与保养承包协议
- 2025版VOC在线治理与智能化运维服务合同
- 2025版科技园区办公场地租赁合同范本
- (完整版)常见肿瘤AJCC分期手册第八版(中文版)
- 哔哩哔哩认证公函
- 托玛琳养生碗gg课件
- 水产养殖示范基地建设项目实施方案
- 行政后勤人员 三级安全教育培训记录卡
- 消化系统炎症性肠病labc
- DB52∕T 1480-2019 GLW-8430连栋塑料薄膜温室通用技术规范
- 医院核心制度题库(有答案)已修整(共48页)
- 危险源辨识与隐患排查全面讲解
- 第9分册并联电容器组运维细则(国网上海)
- PL7串口连接PLC教程-文档资料
评论
0/150
提交评论