![华师大版全等三角形的识别[二].ppt_第1页](http://file1.renrendoc.com/fileroot2/2020-1/13/2ae35c3a-53f8-4e92-95d5-59960b454131/2ae35c3a-53f8-4e92-95d5-59960b4541311.gif)
![华师大版全等三角形的识别[二].ppt_第2页](http://file1.renrendoc.com/fileroot2/2020-1/13/2ae35c3a-53f8-4e92-95d5-59960b454131/2ae35c3a-53f8-4e92-95d5-59960b4541312.gif)
![华师大版全等三角形的识别[二].ppt_第3页](http://file1.renrendoc.com/fileroot2/2020-1/13/2ae35c3a-53f8-4e92-95d5-59960b454131/2ae35c3a-53f8-4e92-95d5-59960b4541313.gif)
![华师大版全等三角形的识别[二].ppt_第4页](http://file1.renrendoc.com/fileroot2/2020-1/13/2ae35c3a-53f8-4e92-95d5-59960b454131/2ae35c3a-53f8-4e92-95d5-59960b4541314.gif)
![华师大版全等三角形的识别[二].ppt_第5页](http://file1.renrendoc.com/fileroot2/2020-1/13/2ae35c3a-53f8-4e92-95d5-59960b454131/2ae35c3a-53f8-4e92-95d5-59960b4541315.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、探索三角形全等识别2,探究新知,因铺设电线的需要,要在池塘两侧A、B处各埋设一根电线杆(如图),因无法直接量出A、B两点的距离,现有一足够的米尺。请你设计一种方案,粗略测出A、B两杆之间的距离。,小明的设计方案:先在池塘旁取一个能直接到达A和B处的点C,连结AC并延长至D点,使AC=DC,连结BC并延长至E点,使BC=EC,连结CD,用米尺测出DE的长,这个长度就等于A,B两点的距离。请你说明理由。,做一做,(1)如果“两边及一角”条件中的角是两边的夹角,比如三角形两边分别为2.5cm,3.5cm,它们所夹的角为40 ,你能画出这个三角形吗?你画的三角形与同伴画的一定全等吗?,(2)若两边的夹
2、角为20 ,画一个三角形。 再换一个30 试一试,情况会怎样呢?,结论:两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”,以2.5cm,3.5cm为三角形的两边,长度为2.5cm的边所对的角为40 ,情况又怎样?动手画一画,你发现了什么?,A,B,C,D,E,F,2.5cm,3.5cm,40,40,3.5cm,2.5cm,结论:两边及其一边所对的角相等,两个三角形不一定全等,猜一猜:,是不是二条边和一个角对应相等,这样的两个三角形一定全等吗?你能举例说明吗?,如图ABC与ABD中,AB=AB,AC=BD, B=B,它们全等吗?,注:这个角一定要是这两边所夹的角,练一练,分
3、别找出各题中的全等三角形,40,D,E,F,(1),(2),ABCEFD 根据“SAS”,ADCCBA 根据“SAS”,小明的设计方案:先在池塘旁取一个能直接到达A和B处的点C,连结AC并延长至D点,使AC=DC,连结BC并延长至E点,使BC=EC,连结CD,用米尺测出DE的长,这个长度就等于A,B两点的距离。请你说明理由。,想一想,AC=DC ACB=DCE BC=EC,ACBDCE,AB=DE,已知:如图, AB=CB , ABD= CBD 。 问AD=CD, BD 平分 ADC 吗?,A,B,C,D,(2) 已知:AD=CD, BD 平分 ADC 。 问A= C 吗?,F,E,D,C,B
4、,A,.如图,BE,ABEF,BDEC,那么ABC与FED全等吗?为什么?,ACFD吗?为什么?,4,3,2,1,补充题: 例1 如图AC与BD相交于点O,已知OA=OC,OB=OD,说明AOBCOD的理由。,例2 如图,AC=BD,CAB= DBA,你能判断BC=AD吗?说明理由。,归纳:判定两条线段相等或二个角相等可以通过从它们所在的两个三角形全等而得到。,小明做了一个如图所示的风筝,其中EDH=FDH, ED=FD ,将上述条件标注在图中,小明不用测量就能知道EH=FH吗?与同桌进行交流。,EDHFDH 根据“SAS”,所以EH=FH,说一说,1、今天我们学习哪种方法判定两三角形全等?,答:边角边(SAS),2、通过这节课,判定三角形全等的条件有哪些?,答:SSS、SAS、ASA、A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- “醉驾”型危险驾驶罪综合治理模式的实践探索与反思
- 农村供水绩效管理办法
- 标准化管理下的消毒供应中心质量控制体系构建与实践
- 民政小区车辆管理办法
- 小学篮球社团活动方案
- 220kV变电站工程试运行流程与解析
- 古代文学专题:经典文本与思想传承研究
- 公共平台建设管理办法
- 大豆籽粒营养成分与豆乳品质的关系分析
- 高考期间食堂食品安全保障措施
- 2024年江苏三支一扶真题
- 《危险货物港口作业重大事故隐患判定指南》解读与培训
- 主、被动防护网施工方案-图文
- 2025年初中语文文学常识:常考100题汇编
- 君易和文化课件
- 药食同源106种25年4月更新
- 2025年江苏省南通市中考英语适应性试卷(A卷)
- 无机盐在化妆品行业的应用研究考核试卷
- 猪场生产安全
- 2025年度苗圃土地承包合同-观光树种植与生态旅游产业链投资合作框架
- 《城市供水》课件
评论
0/150
提交评论