Set-Theory集合.ppt_第1页
Set-Theory集合.ppt_第2页
Set-Theory集合.ppt_第3页
Set-Theory集合.ppt_第4页
Set-Theory集合.ppt_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Sets集合,演讲人:陈思维,2,Agenda 目录,Concepts 概念 Representations 表示 Properties of sets 性质 Operations 运算,3,Sets,A Set is an unordered collection of objects Members of a set are called elements How to determine a set Listing(列举法): Example: A = 1,3,5,7 = 7, 5, 3, 1, 3 Description(描述法): Example: B = x | x=2k+1, 0

2、 k 30,4,Set Theory,xA “x is an element of A” “x is a member of A” xA “x is not an element of A” A = x1, x2, , xn “A contains” Order of elements is meaningless. It does not matter how often the same element is listed.,5,Set Equality,Sets A and B are equal if and only if they contain exactly the same

3、elements. Examples: A = 9, 2, 7, -3, B = 7, 9, -3, 2 : A = B A = dog, cat, horse, B = cat, horse, squirrel, dog : A B A = dog, cat, horse, B = cat, horse, dog, dog : A = B,6,Some important sets,The empty set = has no elements. Universal set: the set of all elements about which we make assertions. Ex

4、amples: U = all natural numbers U = all real numbers U = x| x is a natural number and 1 x10,7,Subsets,A is a subset of B if every element of A is also contained in B (in symbols A B) Equality: A = B if A B and B A, i.e., A = B whenever x A, then x B, and whenever x B, then x A A is a proper subset o

5、f B if A B but B A,8,Subsets,A B “A is a subset of B” A B if every element of A is also an element of B. Examples: A = 3, 9, B = 5, 9, 1, 3, A B ? True A = 3, 3, 3, 9, B = 5, 9, 1, 3, A B ? True A = 1, 2, 3, B = 2, 3, 4, A B ? false,Venn diagrams,A Venn diagram provides a graphic view of sets Venn d

6、iagrams are useful in representing sets and set operations which can be easily and visually identified. Various sets are represented by circles inside a big rectangle representing the universal set.,9,10,Subsets,Useful rules: A = B (A B) (B A) (A B) (B C) A C (next Venn Diagram),11,Subsets,Useful ru

7、les: A for any set A A A for any set A Proper subsets(真子集): A B “A is a proper subset of B” A B x (xA xB) x (xB xA),12,Power set,The power set of A is the set of all subsets of A, in symbols P(A), P(A)= X | X A Example: if A = 1, 2, 3, then P(A) = , 1, 2, 3, 1,2, 1,3, 2,3, 1,2,3 Theorem: If |A| = n,

8、 then |P(A)| = 2n.,13,The Power Set,P(A) “power set of A” P(A) = X | X A (contains all subsets of A) Examples: A = x, y, z P(A) = , x, y, z, x,y, x,z, y,z, x,y,z A = P(A) = Note: |A| = 0, |P(A)| = 1,14,Set Operations,Union: Elements in at least one of the two sets. AB = x | xA xB Example: A = a, b,

9、B = b, c, d AB = a, b, c, d,A,B,U,AB,Set Operations,Intersection: Elements in exactly one of the two sets. AB = x | xA xB Example: A = a, b, B = b, c, d AB = b,15,A,B,U,AB,Set Operations,Difference: Elements in first set but not second. Difference is also called the relative complement of B in A. A-

10、B = x | xA xB Example A = a, b, B = b, c, d A-B = a,16,A,B,U,A-B,Set Operations,Symmetric Difference: Elements in exactly one of the two sets. AB = x | xA xB = (AB) (AB) Example: A = a, b, B = b, c, d AB = a,c,d,17,A,B,U,AB,Set Operations,Complement(补集): Elements not in the set (unary operator). Ac

11、= x | x A Example: U = N, A = 250, 251, 252, Ac = 0, 1, 2, , 248, 249,Copyright 2007 by Xu Dezhi,18,A,U,Ac,19,Disjoint Sets,Disjoint: If A and B have no common elements, they are said to be disjoint. A B = ,A,B,U,20,Examples for set operations,If A=1, 4, 7, 10, B=1, 2, 3, 4, 5 A B =? A B =? A B =? B

12、 A =? A B =?,21,Example for set operations,If A=1, 4, 7, 10, B=1, 2, 3, 4, 5 A B = 1, 2, 3, 4, 5, 7, 10 A B = 1, 4 A B = 7, 10 B A = 2, 3, 5 A B = (AB) (AB) = 2, 3, 5, 7, 10,22,Properties of set operations (1),Theorem: Let U be a universal set, and A, B and C subsets of U. The following properties h

13、old: a) Associativity(结合律): (A B) C = A (B C) (A B) C = A (B C) b) Commutativity(交换律): A B = B A A B = B A,23,Properties of set operations (2),c) Distributive laws(分配律): A(BC) = (AB)(AC) A(BC) = (AB)(AC) d) Identity laws(恒等律): AU=A A = A e) Complement laws: AAc = U AAc = ,24,Properties of set operations (3),f) Idempotent laws(幂等律): AA = A AA = A g) Bound laws(支配律): AU = U A = h) Absorption laws(吸收律): A(AB) = A A(AB) = A,25,Properties of set operations (4),i) complementation laws(补集律): (Ac)c = A j) De Morgans laws(德摩根定律): (AB)c = AcBc (AB)c =

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论