




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.1.2用二分法求方程的近似解,一,二,一、二分法的概念 1.在一档娱乐节目中,主持人让选手在规定时间内猜某物品的价格,若猜中了,就把物品奖给选手.某次竞猜的物品为价格在800元1 200元之间的一款手机,选手开始报价: 选手:1 000. 主持人:低了. 选手:1 100. 主持人:高了. 选手:1 050. 主持人:祝贺你,答对了. (1)主持人说“低了”隐含着手机价格在哪个范围内? 提示:(1 000,1 200. (2)选手每次的报价值同竞猜前手机价格所在范围有何关系? 提示:报价值为竞猜前手机价格所在范围的中间值.,一,二,2.填空: 对于在区间a,b上连续不断且f(a)f(b)0
2、的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.,3.判断正误: 函数f(x)=|x|可以用二分法求其零点. () 答案:,一,二,4.做一做: 下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的是() 解析:利用二分法求函数零点必须满足零点两侧的函数值异号.在选项B中,不满足f(a)f(b)0,不能用二分法求函数零点,由于选项A,C,D中零点两侧的函数值异号,故可采用二分法求函数零点. 答案:B,一,二,二、用二分法求f(x)零点近似值的步骤 1.在上述猜物品价格的实例中,竞猜的过程是否有规律可
3、循? 提示:竞猜过程归结为:设原价为x,则(1)给定价格区间a,b;(2)求区间(a,b)的中点c;(3)若cx,则在区间(a,c)内竞猜;若cx,则在区间(c,b)内竞猜;(4)依次类推,直到猜出原价x.,一,二,2.填空:给定精确度,用二分法求f(x)零点近似值的步骤如下 (1)确定区间a,b,验证f(a)f(b)0,给定精确度; (2)求区间(a,b)的中点c; (3)计算f(c); 若f(c)=0,则c就是函数的零点; 若f(a)f(c)0,则令b=c(此时零点x0(a,c); 若f(c)f(b)0,则令a=c(此时零点x0(c,b). (4)判断是否达到精确度:即若|a-b|,则得到
4、零点近似值a(或b),否则重复(2)(4).,3.判断正误: 二分法只可用来求方程的近似解. () 答案:,一,二,4.做一做: 若函数f(x)=log3x+x-3的一个零点附近的函数值用二分法逐次计算,参考数据如下: f(2)-0.369 1f(2.5)0.334 0 f(2.25)-0.011 9f(2.375)0.162 4 f(2.312 5)0.075 6f(2.281 25)0.031 9 则方程x-3+log3x=0的一个近似根(精确度0.1)为() A.2.1B.2.2C.2.3D.2.4 解析:由参考数据可知f(2.25)f(2.312 5)0, 且|2.312 5-2.25
5、|=0.062 50.1,所以当精确度为0.1时,可以将x=2.3作为函数f(x)=log3x+x-3零点的近似值,也即为方程x-3+log3x=0的近似根. 答案:C,探究一,探究二,思想方法,当堂检测,探究一用二分法求函数的零点 例1求函数f(x)=x2-5的负零点(精确度0.1). 分析:先确定f(-2)与f(-3)的符号,再按照二分法求函数零点近似值的步骤求解. 解:由于f(-2)=-10,故取区间-3,-2作为计算的初始区间.用二分法逐次计算,列表如下:,由于|-2.25-(-2.187 5)|=0.062 50.1, 所以函数的一个近似负零点可取-2.25.,探究一,探究二,思想方
6、法,当堂检测,反思感悟 用二分法求函数零点的近似值应遵循的原则及求解流程图 1.用二分法求函数零点的近似值应遵循的原则: (1)依据图象估计零点所在的初始区间m,n(这个区间既要包含所求的根,又要使其长度尽可能的小,区间的端点尽量为整数). (2)取区间端点的平均数c,计算f(c),确定有解区间是(m,c)还是(c,n),逐步缩小区间的“长度”,直到区间的长度符合精确度要求(这个过程中应及时检验所得区间端点差的绝对值是否达到给定的精确度),才终止计算,得到函数零点的近似值(为了比较清晰地表达计算过程与函数零点所在的区间往往采用列表法).,探究一,探究二,思想方法,当堂检测,2.利用二分法求函数
7、近似零点的流程图:,探究一,探究二,思想方法,当堂检测,延伸探究如本例中的精确度改为0.2呢? 解:由【例1】的表格可知,区间(-2.25,-2)的长度为|-2-(-2.25)|=0.250.2; 而区间(-2.25,-2.125)的长度|-2.125-(-2.25)|=0.1250.2,所以这个区间的两个端点值就可以作为其近似值,所以其近似值可取-2.125.,探究一,探究二,思想方法,当堂检测,探究二求方程的近似解 例2 求方程lg x=2-x的近似解(精确度0.1). 分析:在同一平面直角坐标系中,画出y=lg x和y=2-x的图象,确定方程的解所在的大致区间,再用二分法求解.,探究一,
8、探究二,思想方法,当堂检测,解:在同一平面直角坐标系中,作出y=lg x,y=2-x的图象如图所示,可以发现方程lg x=2-x有唯一解,记为x0,并且解在区间(1,2)内.若f(x)=lg x+x-2,则f(x)的零点为x0. 用计算器计算,得f(1)0 x0(1,2); f(1.5)0 x0(1.5,2); f(1.75)0 x0(1.75,2); f(1.75)0 x0(1.75,1.875); f(1.75)0 x0(1.75,1.812 5). |1.812 5-1.75|=0.062 50.1, 方程的近似解可取为1.812 5.,探究一,探究二,思想方法,当堂检测,反思感悟 用二
9、分法求方程的近似解需明确的两点 1.根据函数的零点与相应方程的解的关系,求函数的零点与求相应方程的解是等价的.求方程f(x)=0的近似解,即按照用二分法求函数零点近似值的步骤求解. 2.对于求形如f(x)=g(x)的方程的近似解,可以通过移项转化成求形如F(x)=f(x)-g(x)=0的方程的近似解,解后按照用二分法求函数零点近似值的步骤求解.,探究一,探究二,思想方法,当堂检测,变式训练用二分法求2x+x=4在区间(1,2)内的近似解(精确度0.2). 参考数据:,解:令f(x)=2x+x-4, 则f(1)=2+1-40. |1.375-1.5|=0.1250.2, 2x+x=4在(1,2)
10、内的近似解可取为1.375.,探究一,探究二,思想方法,当堂检测,转化与化归思想在二分法中的应用,以下用二分法求其零点的近似值. 由于f(1)=-10,故可以取区间1,2为计算的初始区间.用二分法逐步计算,列表如下:,探究一,探究二,思想方法,当堂检测,由于区间(1.257 812 5,1.265 625)的长度为1.265 625-1.257 812 5=0.007 812 50.01,探究一,探究二,思想方法,当堂检测,方法点睛 1.求根式的近似值,实质上就是将根式转化为方程的无理根,再转化为函数的零点,通过二分法求解. 2.二分法思想的实质是一种逼近思想,所求值与近似值间的差异程度取决于
11、精确度.,探究一,探究二,思想方法,当堂检测,用二分法逐次计算,见表如下:,探究一,探究二,思想方法,当堂检测,1.已知函数f(x)的图象如图,其中零点的个数及可以用二分法求其零点的个数分别为() A.4,4 B.3,4 C.5,4 D.4,3 解析:由题图知函数f(x)与x轴有4个交点,因此零点个数为4,从左往右数第4个交点横坐标的左右两侧的函数值同号,因此不能用二分法求该零点,而其余3个均可使用二分法来求.故选D. 答案:D,探究一,探究二,思想方法,当堂检测,2.用二分法求函数f(x)=-x3-3x+5的近似零点时的初始区间是() A.(1,3)B.(1,2) C.(-2,-1)D.(-3,-2) 解析:本题考查对用二分法求函数零点近似值的理解及初始区间的选择.f(1)=1,f(2)=-9,f(-1)=9,f(-2)=19,f(3)=-31,f(1)f(2)0,f(0.605)0,即得到方程的一个近似解为.(精确度0.1) 解析:0.605-0.532=0.0730.1,(0.532,0.605)内的值都可以作为方程精确度为0.1的一个近似解. 答案:0.532(答案不唯一),探究一,探究二,思想方法,当堂检测,4.用二分法求函数f(x)=ln x-2+x在区间1,2上零点的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全技能培训
- 艺术培训学校年度总结
- 宗教信仰与法制教育
- 韶山研学班会课件
- 城镇污水管网建设工程投资估算方案(参考模板)
- 汽车配套产业基地项目规划设计方案(范文模板)
- 2025年SPI环氧乙烷银催化剂项目建议书
- 2025年齿轮加工机床项目合作计划书
- 2025年技术成果转化服务项目建议书
- 2025年公路养护检测设备项目合作计划书
- GB 30980-2014海洋倾倒物质评价规范疏浚物
- GA/T 1169-2014警用电子封控设备技术规范
- 第十二篇 糖尿病患者生活常识
- 污水处理站安全培训课件
- 2015高考全国新课标1地理试题及答案
- 超星尔雅《诗经》导读检测题答案
- GB 27954-2020 黏膜消毒剂通用要求
- 中考《红星照耀中国》各篇章练习题及答案(1-12)
- (完整版)ECRS培训课件
- 外轮理货工作英语
- 华中师范大学辅导员队伍建设实施办法
评论
0/150
提交评论