IndexStructuresforMultimediaData多媒体数据的索引结构.ppt_第1页
IndexStructuresforMultimediaData多媒体数据的索引结构.ppt_第2页
IndexStructuresforMultimediaData多媒体数据的索引结构.ppt_第3页
IndexStructuresforMultimediaData多媒体数据的索引结构.ppt_第4页
IndexStructuresforMultimediaData多媒体数据的索引结构.ppt_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Jaruloj Chongstitvatana,2301474 Advanced Data Structures,1,Index Structures for Multimedia Data,Feature-based Approach,2301474 Advanced Data Structures,2,Jaruloj Chongstitvatana,Multimedia Data,Feature-based approach Image/Voice data Sequence data Geometric data Text descriptor,Examples Movies, musi

2、c Gene sequence Shape (CAD) Documents,2301474 Advanced Data Structures,3,Jaruloj Chongstitvatana,Queries for Multimedia Data,Point queries Given a data, find the exact match Range queries Given a data, find similar data within a range Nearest-neighbor queries Given a data, find the most similar data

3、,2301474 Advanced Data Structures,4,Jaruloj Chongstitvatana,Feature Transformation,Mapping from an object to a d-dimensional vector, called a feature vector. What is this mapping function? For image data: color histogram, etc. For sequence data: number of each element For geometric data: slope of se

4、gments of perimeter For text descriptor: number of each keyword,2301474 Advanced Data Structures,5,Jaruloj Chongstitvatana,Similarity Measure: distance function,Given 2 data objects x and y. Let (x,y) be the distance function. (x,y) indicates the similarity between data x and y. Usually (x,y) is bas

5、ed on a distance between the feature vectors of x and y.,2301474 Advanced Data Structures,6,Jaruloj Chongstitvatana,Similarity Queries,Point queries Given an object x, find any object y such that (x,y)=0. Range queries Given an object x and a threshold , find any object y such that (x,y) . Nearest-n

6、eighbor queries Given an object x, find an object y such that (x,y) (x,z) for any object z in the database.,2301474 Advanced Data Structures,7,Jaruloj Chongstitvatana,Distance Measure,Euclidean distance Manhattan distance Maximum distance Weighted Euclidean distance Ellipsoid distance,(x,y) = (i=1,d

7、 (xi-yi)2 )1/2 (x,y) = i=1,d |xi-yi| (x,y) = max i=1,d |xi-yi| (x,y) = (i=1,d wi (xi-yi)2 )1/2 (x,y) = (x-y)T W (x-y),2301474 Advanced Data Structures,8,Jaruloj Chongstitvatana,Other Similarity Queries,k-Nearest-neighbor queries Given an object x and an integer k, find k objects y1, y2, yk, such tha

8、t, for i=1, 2, , k, (x,yi) (x,z) for any other object z in the database. Approximate nearest-neighbor queries Approximate k-nearest-neighbor queries,2301474 Advanced Data Structures,9,Jaruloj Chongstitvatana,Range Queries,On k-d-B trees Grid files Quad trees R-trees Already discussed.,2301474 Advanced D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论