




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、,2.9 有理数的乘法,第2章 有理数,导入新课,讲授新课,当堂练习,课堂小结,2.有理数的乘法的运算律,1.进一步熟练有理数的乘法运算;(重点) 2.归纳总结多个有理数相乘的符号法则;(重点) 3.能够利用有理数的运算律进行简便计算.(重点,难点),导入新课,在小学里,我们都知道,数的乘法满足交换律、结合律和分配律,例如,35=53 (35)2=3(52) 3(5+2)=35+32,思考:引入负数后,三种运算律是否还成立呢?,回顾与思考,第一组:,(2) (34)0.25 3(40.25),(3) 2(34) 2324,(1) 23 32,23 32,(34)0.25 3(40.25),2(
2、34) 2324,6,6,3,3,14,14,讲授新课,问题 下面每小组运算分别体现了什么运算律?,5(4) ,15 35,第二组:,(2) 3(4)( 5) 3(4)(5),(3) 53(7 ) 535(7 ) ,(1) 5(6) (6 )5,-30,-30,60,60,20,20,5 (6) (6) 5,3(4)( 5) 3(4)(5),53(7 ) 535(7 ),(12)(5) ,320,结论: (1)第一组式子中数的范围是 _; (2)第二组式子中数的范围是 _; (3)比较第一组和第二组中的算式,可以发现 _.,正数,有理数,各运算律在有理数范围内仍然适用,两个数相乘,交换两个因数
3、的位置,积相等.,abba,三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.,(ab)c a(bc),根据乘法交换律和结合律可以推出: 三个以上有理数相乘,可以任意交换因数的位置,也可先把其中的几个数相乘.,1.乘法交换律:,2.乘法结合律:,数的范围已扩充到有理数.,总结归纳,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.,3. 分配律:,根据分配律可以推出: 一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.,a(bc),abac,a(bcd)abacad,例1 计算:,解:(1),(2)4.98(-5),=(5-0.02) (-5)=(-
4、25)+0.1=-24.9,为了简化计算,可先把算式变形,再运用分配率,典例精析,例2 计算:,为了简化计算,可逆向运用分配律,观察下列各式,它们的积是正的还是负的?多个不等于 0的有理数相乘,积的符号和负因数的个数有什么关系? (1)(1)234 (2)(1)(2)34 (3)(1)(2)(3)4 (4)(1)(2)(3)(4) (5)(1)(2)(3)(4)0,负,正,负,正,零,几个不等于零的数相乘,积的正负号由负因数的个 数决定.当负因数的个数为奇数时,积为负;当负因 数的个数为偶数时,积为正.几个数相乘,有一个因数 为零,积就为零.,总结归纳,几个不等于零的数相乘,首先确定积的正负号, 然后把绝对值相乘!,思考如何算:(-5)(-1) 3 (-2) 2,几个数相乘,有一个因数为零,积就为零!,思考如何算:(-5)(-1) 0(-2) 2,例3 计算:,课本练习,课堂小结,两个数相乘,交换两个因数的位置,积不变.,abba,三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.,(ab)c a(bc),1.乘法交换律:,2.乘法结合律:,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.,3. 分配律:,a(bc),abac,4.几个不是零的数相乘
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国数字孪生技术行业发展运行现状及投资战略规划报告
- 廉租房行业市场风险投资及融资策略趋势分析研究报告(2024-2030)
- 健康生活绿色无毒课件
- 2024年冷冻设备项目投资申请报告代可行性研究报告
- 蒙自市市管干部管理办法
- 虹口区食品仓库管理办法
- 行政兼培训管理暂行办法
- 西安市出租出借管理办法
- 衡阳市街道建设管理办法
- 襄垣县经营场所管理办法
- 2022室外排水设施设计与施工-钢筋混凝土化粪池22S702
- 中国铁路总公司《铁路技术管理规程》(高速铁路部分)2014年7月
- 钙加维生素Dppt课件(PPT 14页)
- TRD深基坑止水帷幕施工方案(22页)
- FZ∕T 63013-2021 涤纶长丝织带
- 八少八素初试甄别试题
- 哈萨克斯坦共和国有限责任公司和补充责任公司法
- 企业组织架构图模板
- 藏医院制剂中心建设项目建议书写作模板-定制
- 钢结构舞台施工方案
- 轴类零件加工ppt课件
评论
0/150
提交评论