




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.1.2指数函数及其性质(二),第二章2.1指数函数,学习目标 1.掌握指数函数与其他函数复合所得的函数单调区间的求法及单调性的判断. 2.能借助指数函数性质比较大小. 3.会解简单的指数方程、不等式. 4.了解与指数函数相关的函数奇偶性的判断方法.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考,知识点一不同底指数函数图象的相对位置,y2x与y3x都是增函数,都过点(0,1),在同一坐标系内如何确定它们两个的相对位置?,答案,答案经描点观察,在y轴右侧,2x3x,即y3x图象在y2x上方,经(0,1)点交叉,位置在y轴左侧反转,y2x在y3x图象上方.,一般地,在同一坐标系中有多个
2、指数函数图象时,图象的相对位置与底数大小有如下关系:,梳理,(1)在y轴右侧,图象从上到下相应的底数由大变 小;在y轴左侧,图象从下到上相应的底数由大 变小.即无论在y轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x1时,ya去理解,如图. (2)指数函数yax与y (a0且a1)的图象关于y轴对称.,思考,知识点二比较幂的大小,若x1x2,则 与 (a0且a1)的大小关系如何?,答案,答案当a1时,yax在R上为增函数,所以 , 当0a1时,yax在R上为减函数,所以 .,梳理,一般地,比较幂大小的方法有: (1)对于同底数不同指数的两个幂的大小,利用指数函数的 性来判断; (2)
3、对于底数不同指数相同的两个幂的大小,利用指数函数的 的变化规律来判断; (3)对于底数不同指数也不同的两个幂的大小,则通过 来判断.,单调,图象,中间值,思考,知识点三解指数方程、不等式,若 ,则x1,x2的大小关系如何?,答案,答案当 f(x)在区间m,n上单调递增(减)时,若x1,x2m,n, 则f(x1)f(x2)x1x2(x1x2). 所以,当0a1时, x1x2, 当a1时, x1x2. 此原理可用于解指数方程、不等式.,梳理,简单指数不等式的解法: (1)形如af(x)ag(x)的不等式,可借助yax的 求解; (2)形如af(x)b的不等式,可将b化为以a为底数的指数幂的形式,再
4、借助yax的 求解; (3)形如axbx的不等式,可借助两函数 yax,ybx的图象求解.,单调性,单调性,知识点四与指数函数复合的函数单调性,思考,答案,一般地,有:形如yaf(x)(a0,且a1)函数的性质 (1)函数 yaf(x)与函数yf(x)有 的定义域. (2)当a1时,函数yaf(x)与yf(x)具有 的单调性; 当0a1时,函数yaf(x)与函数yf(x)的单调性 .,相同,梳理,相同,相反,题型探究,例1解下列方程.,解答,类型一解指数方程,32x432(x2), 2x42(x2), x2.,解答,(2)22x232x10.,解22x232x10, 4(2x)232x10.
5、令t2x(t0),则方程可化为4t23t10,,(1)af(x)b型通常化为同底来解. (2)解指数方程时常用换元法,用换元法时要特别注意“元”的范围.转化为解二次方程,用二次方程求解时,要注意二次方程根的取舍.,反思与感悟,跟踪训练1解下列方程. (1)33x281;,解答,解8134,33x234, 3x24,解得x2.,(3)52x65x50.,解答,解令t5x,则t0, 原方程可化为t26t50, 解得t5或t1,即5x5或5x1, x1或x0.,命题角度1比较大小 例2比较下列各题中两个值的大小. (1)1.72.5 , 1.73;,类型二指数函数单调性的应用,解答,解1.71, y
6、1.7x在(,)上是增函数. 2.53, 1.72.51.73.,(2)1.70.3 , 1.50.3;,解答,解方法一1.71.5, 在(0,)上,y1.7x的图象位于y1.5x的图象的上方. 而0.30,1.70.31.50.3.,1.70.31.50.3.,(3)1.70.3,0.83.1.,解答,解1.70.31.701,0.83.10.801, 1.70.30.83.1.,当两个数不能利用同一函数的单调性作比较时,可考虑引入中间量,常用的中间量有0和1.,反思与感悟,跟踪训练2比较下列各题中的两个值的大小. (1)0.80.1,1.250.2;,解答,解00.81, y0.8x在R上
7、是减函数. 0.20.1, 0.80.20.80.1, 即0.80.11.250.2.,解答,命题角度2解指数不等式 例3解关于x的不等式:a2x1ax5(a0,且a1).,解答,解(1)当01时,a2x1ax5, 2x1x5,解得x6. 综上所述,当01时,不等式的解集为x|x6.,解指数不等式的基本方法是先化为同底指数式,再利用指数函数单调性化为常规的不等式来解,注意底数对不等号方向的影响.,反思与感悟,跟踪训练3已知(a2a2)x(a2a2)1x,则x的取值范围是 .,答案,解析,命题角度3与指数函数复合的单调性问题 例4(1)求函数y 的单调区间;,解答,在(,3上,yx26x17是减
8、函数,,在3,)上,yx26x17是增函数,,解答,同理可得减区间是(,2.,复合函数单调性问题归根结底是由x1x2到f(x1)与f(x2)的大小,再到g(f(x1)与g(f(x2)的大小关系问题.,反思与感悟,跟踪训练4求下列函数的单调区间. (1)y ;,解答,解设yau,ux22x3, 由ux22x3(x1)24,得u在(,1上为减函数,在1,)上为增函数. 当a1时,y关于u为增函数; 当01时,原函数的增区间为1,),减区间为(,1; 当0a1时,原函数的增区间为(,1,减区间为1,).,解答,解已知函数的定义域为x|x0.,而根据y 的图象可知在区间(,1)和(1,)上,y是关于u
9、的减函数, 原函数的增区间为(,1)和(1,).,当堂训练,1.若a0.5 ,b0.5 ,c0.5 ,则a、b、c的大小关系是 A.abc B.abc C.acb D.bca,答案,2,3,4,5,1,解析,2.方程42x116的解是,答案,2,3,4,5,1,解析,3.函数f(x) 的单调递增区间为 A.(,0 B.0,) C.(1,) D.(,1),答案,2,3,4,5,1,解析,f(x)的单调递增区间为u(x)x21的单调递减区间,即(,0.,4.设0a1,则关于x的不等式 的解集为_.,答案,2,3,4,5,1,解析,解析0a1,yax在R上是减函数,,(1,),又,2x23x22x2
10、2x3,解得x1.,5.若指数函数yax 在1,1上的最大值与最小值的差是1,则底数a .,解析若0a1,则a1a1,即a2a10,,若a1,则aa11,即a2a10,,答案,解析,2,3,4,5,1,规律与方法,1.比较两个指数式值的大小的主要方法 (1)比较形如am与an的大小,可运用指数函数yax的单调性. (2)比较形如am与bn的大小,一般找一个“中间值c”,若amc且cbn,则ambn. 2.解简单指数不等式问题的注意点 (1)形如axay的不等式,可借助yax的单调性求解.如果a的值不确定,需分01两种情况进行讨论.,(2)形如axb的不等式,注意将b化为以a为底的指数幂的形式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现场柴油发电机临时供电方案设计与实施细节
- 机电养护监理管理办法
- 生态文明建设教育课程体系构建与教学设计研究
- 数字仿真:产品创新加速器技术探索
- 煤系巷道顶板叠加理论与有效锚固层厚度应用研究
- 医疗集团资产管理办法
- 热红外遥感勘探-洞察及研究
- 音乐传播视角下高职学生合唱艺术审美能力培养策略研究
- 全员安全生产责任制清单模板
- 关于安全生产会议的法律规定
- 开展退伍老兵活动方案
- 2025年中国物流集团招聘笔试备考题库(带答案详解)
- 年产 35 万吨金属结构件项目(一期年产 6 万吨金属结构件)环评报告书
- 【基于中国医疗行业上市公司数据的CAPM模型实证检验分析7800字】
- 地产 设计培训课件
- 中国古建筑行业市场发展现状及投资前景展望报告
- 浙江杭州市2024-2025学年高一下学期6月期末考试物理试题及答案
- 员工劝退方案文案(3篇)
- 2025年高考全国一卷数学真题-答案
- 企业异地作业管理制度
- 陕西省专业技术人员继续教育2025公需课《专业技术人员综合素质拓展》4学时题库及答案
评论
0/150
提交评论