




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.5 r.v. 函数的分布,方法 将与Y 有关的事件转化成 X 的事件,问题: 已知 r.v. X 的分布律或p.d.f. fX(x),求随机变量Y= g(X)的分布律或密度函数fY(y),一、离散型随机变量函数的分布律,若g(xk)中有一些是相同的,则将它们作并项.,一般,若X是离散型 r.v., X的概率分布为,则 Y=g(X) ,例1 已知 X 的概率分布为,求 Y 1= 2X 1 与 Y2= X 2 的分布律,解,故,二、连续型随机变量函数的分布,求 Y = g( X ) 的p.d.f.,方法1、 “分布函数法”,已知 X 的p.d.f. p(x) 或分布函数,例2 r.v.X的密度
2、函数为,求(1)Y=2X, (2)Z=eX的密度函数,解:(1),(2)Z=eX,解:(2),当z0时,当z 0时,X(-,+) 时,Z=eX(0,+),0,z 0,例3.设XU(-1,1),求Y=X2的分布函数与概率密度。,当y 0时,当0y 1时,当y1时,解,X(-1,1) 时,Y=X 2(0,1),练习. 设XU1,2,求Y=e2X的概率密度,当y e2时,当e2ye4时,当y e4时,解,X1,2 ,Y=e2Xe2, e4,e2,e4,y,Yy,x=1,x=2,x=,定理1 若XfX(x),y=g(x)是单调可导函数,则,注:1 只有当g(x)是x的单调可导函数时,才可用 以上公式推
3、求Y的密度函数; 2 注意定义域的选择; 3本质:,其中x=h(y)为yg(x)的反函数.,方法 2、“公式法” 一般地,例4,解:,设,即服从柯西分布,关于x严格单调,反函数为,例5.已知XN(,2),求,解:,的概率密度.,关于x严格单调,反函数为,故,( y +),即 YN(0, 1),例6 已知 X 的 p.d.f.为fX(x), Y=aX+b,a、b为常数,且 a 0, 求 fY ( y ),解,当a 0 时,,当a 0 时,,故,例如 设 X N ( ,2) , Y = a X +b, 则,Y N ( a +b, a22 ),特别地 (前例5),若 X N ( , 2) ,则,例7 设X N(0,1),Y=X 2,求fY(y),解,y,当 y 0 时,FY (y) = 0,当 y 0 时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西省岢岚县高中化学 第四章 非金属及其化合物 4.2 富集在海水中的元素-氯说课稿 新人教版必修1
- 2025煤炭买卖合同
- 2025山东省荷泽市单县农村信用社房贷合同书
- 2025年建筑外墙真石漆施工合同
- 2025新款合同范本样例
- 拍皮球教学设计-2023-2024学年小学音乐一年级下册人音版(主编:曹理)
- 景德镇事业单位笔试真题2025
- 2025民宿租赁合同书范本
- 2025药品批发企业劳动合同书
- 2025职员雇佣合同
- 2025年供热管理条例试题及答案
- IQC基础知识培训课件
- 政府代建项目回购协议书范本
- 《压力容器、压力管道安全管理基本要求及检查要点》知识培训
- 《机械制造装备设计》课程教学大纲
- 《世界奇花异草》课件
- 沟通能力培训课件x
- 2024年09月2024秋季中国工商银行湖南分行校园招聘620人笔试历年参考题库附带答案详解
- 2024年山东省职业院校技能大赛(中职组)护理技能赛项考试题库(含答案)
- 文物安全隐患排查整治工作总结
- 儿科静脉输液安全
评论
0/150
提交评论