• 上传我的文档

专题二 数形结合的思想方法 数学第二轮专题复习第一部分 考题剖析.ppt

收藏 版权申诉 举报 下载
专题二 数形结合的思想方法 数学第二轮专题复习第一部分 考题剖析.ppt_第1页
第1页 / 共27页
专题二 数形结合的思想方法 数学第二轮专题复习第一部分 考题剖析.ppt_第2页
第2页 / 共27页
专题二 数形结合的思想方法 数学第二轮专题复习第一部分 考题剖析.ppt_第3页
第3页 / 共27页
专题二 数形结合的思想方法 数学第二轮专题复习第一部分 考题剖析.ppt_第4页
第4页 / 共27页
专题二 数形结合的思想方法 数学第二轮专题复习第一部分 考题剖析.ppt_第5页
第5页 / 共27页
资源描述:

《专题二 数形结合的思想方法 数学第二轮专题复习第一部分 考题剖析.ppt》由会员分享,可在线阅读,更多相关《专题二 数形结合的思想方法 数学第二轮专题复习第一部分 考题剖析.ppt(27页珍藏版)》请在人人文库网上搜索。

1、专题二 数形结合的思想方法,数学第二轮专题复习第一部分,考题剖析 ,规律总结 ,知识概要 ,,,,03,05,23,数形结合的思想方法,1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷.所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法.数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,能够变抽象思维为形象思维,有助于把握数学问题的本 质,它是数学的规律性与灵活性的有机结合. 2.实现数形结合,常与以下内容有关实数与数轴上的点的对应关系;函数与图象的对应关系;曲线与方程的对应关系;以。

2、几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;所给的等式或代数式的结构含有明显的几何意义.如等式x22y124,知识概要,返回目录,数形结合的思想方法,3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”. 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程.这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓。

3、自己的思维、视野.,返回目录,知识概要,数形结合的思想方法,考 题 剖 析,返回目录,1.设命题甲0x3,命题乙|x1|4,则甲是乙成立的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.不充分也不必要条件,考题剖析,返回目录,数形结合的思想方法,解析解法1由命题乙|x1|4可得3x5 , 所以命题甲是命题乙的充分不必要条件. 解法2将两个命题用数轴表示,如图 从上图可以看出,命题甲是命题乙的充分不必要条件.所以选A.,点评 对于处理集合的问题,可以用数形结合的方法,如果是含字母参数的,可以画韦恩图;如果是具体的数集,则可以画数轴,都可以使用集合间的关系直观化.,A,2.已知函数。

4、yfx0 x1的图象如右图,若0x1x21,则( ) A. B. C. D.以上都不正确,,返回目录,考题剖析,数形结合的思想方法,,,,解析 由选项 的结构特点,联想到两点间的斜率公式,事实上, 可以看作是点(x,fx与原点连线的斜率,由图象不难得出答案为A.,,点评 在解题的过程中,要注意一些式的几何意义,一般地 可联系到斜率, 可联系到距离公式.,,,A,3.已知双曲线的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( ) A. , B. , C. , D. , ,返回目录,解析如图,当过右焦点的直线与渐近线平行时,由双曲线性质可知,此时直线与双曲。

5、线右支有且仅有一个交点(且与整个双曲线也仅此一个交点).当过右焦点的直线位于两条渐近线之间时, 直线与双曲线左右支均交于一点,也符合题干条件. 又由双曲线方程 1,有双曲线的渐近 线方程为y x,所以有 k .,,,点评本题还可以设直线方程为ykx4,与双曲线方程联立,求 0,但不可忽略直线与双曲线左右支各交于一点的情况,利用韦达定理确定k的值,基于本题是选择题,不提倡采用解析法.本题重点在于考查数形结合的思想.,C,考题剖析,数形结合的思想方法,4.(2007湖南三市七校试题)若不等式 xa0的 解集为x|mxn,且|mn|2a,则a的值为( ) A.1 B.2 C.3D.4,返回目录,,解。

6、析 画出y , yx的图象, 依题意,ma,na, 从而 a a0或2.故选B.,点评本题很好地体现了数形结合的优越性,如果单纯地从数的观点来解题的话,得出ma与na也是有一定的难度的,但从形的角度出发,可以很直观地看出,这也就说明了解小题时,一 定要重视这种思想的应用.,B,考题剖析,数形结合的思想方法,5.甲、乙两人相约700800在某地会面,假定每人在这 段时间内的每个时刻到达会面地点的可能性是相同的,先到 者等20分钟后便离去,则两人能会面的概率为 .,返回目录,解析在平面上建立直角坐标系,直线x60,直线y60, x轴,y轴围成一个正方形区域G.设甲7时x分到达会面地点, 乙7时y分。

7、到达会面地点,这个结果与平面上的点(x,y) 对应.于是试验的所有可能结果就与G中的所有点一一对应.,考题剖析,数形结合的思想方法,由题意知,每一个试验结果出现的可能性是相同的, 甲乙两人能会面,当且仅当他们到达会面地点的时间相差不超 过20分钟,即 yx20,x20yx20, 因此,图中的 阴影区域g就表示“甲乙能会面”.容易求得 g的面积为6024022000,G的面积为3600, 由几何概型的概率计算公式,“甲乙能会面” 的概率 P甲乙能会面g的面积/G的面积 .,点评 解决问题的关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.,考题剖析,数形结合的思想方法,。

8、返回目录,6.设函数yfx是最小正周期为2的偶函数, 它在区间0,1上的图象为如右图所示的线 段AB,则在区间1,2上,fx .,解析 解法1题目已给出fx在区间 0,1的图象,可运用数形结合与对称的思想方法. 由yfx是偶函数,由“形”对称变换到“形”, 得函数yfx在区间1,0上的图象,如下图的线 段CA. 由yfx是最小正周期为2的函数,再由 “形”向右平移到“形”,得到函数yfx在 区间1,2上的图象,如右图所示的线段BD.,考题剖析,数形结合的思想方法,返回目录,由“形”到“数”,函数yfx在区间1,2 上的图象是经过B1,1,D2,2的直线,由待 定系数法,求得fxxx1,2.,考。

9、题剖析,数形结合的思想方法,解法2也可以由“形”到“数”, 用待定系数法求得,当x0,1时,fxx2; 由偶函数,当x1,0时, fxfxx2x20 x1, 由最小正周期为2,得当x1,2时, fxfx2x22x.,返回目录,点评 解法1根据偶函数与周期函数的特征作出在1,2上的图象,再根据图象找出解析式;解法2,先由 图形确定在0,1上的解析式,再利用周期性和奇偶性将1,2上的解析式化归到0,1上进行处理.两种解法都 恰当利用了“数”与“形”的有机结合.,考题剖析,数形结合的思想方法,返回目录,7.函数y 的最大值为 ,最小值为 .,解析y 表示点Pcosx,sinx与点A2,0连线的斜率的。

10、取值范围,而点P在单位圆上, 如右图,过A作单位圆的切线AB,AC. 易知kAB ,kAC 为斜率 的最大值和最小值,那么y的最大值为 ,最小值为 .,,,点评 对于分式型问题的处理,常可构造斜率模型,利用数形结合的思想方法进行求解.,考题剖析,数形结合的思想方法,返回目录,8.解关于x的不等式|x21|0.,解析 设 分别作出两个函数的图象, 由 令y1y2,求出交点横坐标x1 , x2 , 从图形不难看出当函数y2的图象位于y1的图象的上方时,对应的x值的取值范围即为原不等式的解. x .,,,考题剖析,数形结合的思想方法,返回目录,点评 图象法解不等式与图象法解方程有类似之处,首先求。

11、出两函数图象交点的横坐标即方程的根,然后根据不等式的方向从图象中判断解 的区间.,考题剖析,数形结合的思想方法,返回目录,9.实系数一元二次方程x2ax2b0的一根在0,1上,另一根在 1,2上,求 的取值范围.,,分析用二次函数的图象研究根的分布问题,再研究所得不等式和式子的几何意义.,解析由x2ax2b0的二根分别在区间 0,1与1,2上的几何意义为yfxx2ax2b与 x轴的两交点的横坐标分别在区间0,1,1,2内. ,考题剖析,数形结合的思想方法,返回目录,在aOb坐标平面内,上面不等式表示的点集为ABC的内部, 如图所示. A点由 解得A3,1; B点由 解得B2,0; C点由 解得。

12、C1,0. 而 的几何意义是点a,b与点D1,2连线的斜率. kAD ,kCD 1,由图知kAD kCD, 1.,,,,,,,考题剖析,数形结合的思想方法,返回目录,点评本题是二次方程根的分布、线性规划等的小型综合题,本题解法中两次用到数形结合,一是研究方程根的分布,利用了二次函数的图象,二是在研究 的取值范围时,根据其几何意义为斜率,累出不等式。,考题剖析,数形结合的思想方法,返回目录,,10.(2007岳阳质检)已知奇函数fx (1)求实数m的值,并在给出的直角坐标系中画出yfx的图象; (2)若函数f(x)在区间1,|a|2上单调递增,试确定a的 取值范围.,解析(1)当 x0, f。

13、xx22xx22x, 又f(x)为奇函数,fxfxx22x, f(x)x22x,m2 yf(x)的图象如右所示.,考题剖析,数形结合的思想方法,返回目录,(2)由(1)知 f(x) , 由图象可知,fx在1,1上单调递增, 要使fx在1,|a|2上单调递增, 只需 解之得3a1或1a3.,,,考题剖析,数形结合的思想方法,返回目录,规 律 总 结,返回目录,数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻画与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联。

14、系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.,规律总结,返回目录,数形结合的思想方法,,数形结合的两个方面即以形助数、以数解形. (1)以形助数的体现 利用曲线方程解题; 利用“直线的斜率”; 利用“单位圆”; 利用“点到直线的距离”; 利用“两点间的距离”; 利用“直线的截距”; 利用“平行线间的距离”; 利用“直线的方程”; 利用函数的图象; 利用几何图形解题; 利用向量运算; 利用“三角形三边的关系”; 利用勾股定理构图.,返回目录,,规律总结,数形结合的思想方法,(2)以数解形的体现 向量坐标运算; 立体几何中空间向量坐标运算; 平面解析几何. 应用数形结合的思想,应注意以下数与形的转化 集合的运算及韦恩图; 函数及其图象; 数列通项及求和公式的函数特征及函数图象; 直线的方程及曲线的方程(二元方程).,,,,,,返回目录,规律总结,数形结合的思想方法,以形助数常用的有借助数轴;借助函数图象;借助单位圆;借助直线的有关概念;借助三角形等.总之,无论是解析几何、立体几何、函数问题,无法入手时尽量与“形”联系.,返回目录,规律总结,数形结合的思想方法,。

展开阅读全文
我图网
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新RAR

关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2846424093   微信号:renrenwenkuwang   人人文档上传用户QQ群:460291265   

copyright@ 2020-2023  renrendoc.com 人人文库版权所有   联系电话:0512-65154990

备案号:苏ICP备12009002号-5  经营许可证:苏B2-20200052  苏公网安备:32050602011097号

           

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!