




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学教学内容的设计 -数学概念的教学设计,2.1.1数学概念学习的本质,1.本质:概括出数学中的一类事物对象的共同本质属性,正确区分同类事物的本质属性与非本质属性,正确形成数学概念的内涵和外延。,数学概念学习的内容,()数学概念 的名称,()数学概念 的定义,()数学概念 的例子,()数学概念 的属性,一数学概念学习的本质,概念教学的本质,要使学生在脑中形成概念表象,帮助学生在脑中建构起良好的概念图式。,人类获取概念的主要方式是概念的形成和概念的同化。,概念的形成是指从大量的具体例子出发,归纳概括出一类事物的共同本质属性的过程,概念的同化是指学习者利用原有认知结构中的观念来理解接纳新概念的过程
2、。,二数学概念学习的四种水平,了解 能回忆出概念的言语信息;能辨认出概念的常见例证;会举例说明概念的相关属性,理解 能把握概念的本质属性;能与相关概念建立联系;能区别概念的例证与反例。,掌握 在理解的基础上,能把概念运用于新的情境。,综合运用 能综合运用概念解决问题。,三概念设计的几个阶段,引入、形成、巩固、运用等几个阶段,1、引入:在人们的思维中,对某一类事物的本质 属性有了完整的反映,才能说形成了这一类事物的 概念,而只有运用抽象思维概括出本质属性,才能 从整体上、从内部规律上把握概念所反映的对象。,概念教学设计时:讲清概念的定义。充分揭示概念 定义的本质特征,使学生确切理解所讲概念。在利
3、用 图形引进概念时,要注意图形的变式,以舍弃无关 特征,突出对象的关键属性,使获得的概念更准确 易于迁移。另外,应使学生明确表示概念的符号的 含义。,掌握内涵。概念的内涵有的是由定义推演得到的,如 平行四边形的定义;有的还必须借助其他概念和知识 的积累而趋于完善,如正方形的内涵。,完成分类。掌握概念不仅要掌握概念的内涵,而且要 掌握概念的外延,这是概念的质和量的表现。,掌握有关概念间的逻辑联系。每一个概念处在和其他 一些概念的一定关系、一定联系中,引导学生正确地 认识有关数学概念之间的逻辑联系,认识他们外延之 间的联系,通过比较加深对概念的理解,促使知识系 统化、条理化。,2、巩固:首先,引入
4、新练习后及时让学生做一些巩固 练习;其次用后次复习前次概念,进行知识的返回、再 现。还要注意概念的比较,针对数学概念中容易出错 的地方、易混淆和难理解的概念,有目的地设计一些 问题,运用分析比较的方法,指出他们的相同点和不 同点,供学生鉴别,以加深印象。如排列与组合、随 机相象与随机事件等。再次要及时小结或总结,在讲 完某一节或某一单元后,注意引导学生进行知识内容 的小结和总结。概念是其中的主要内容,包括概念间 的区别及联系等,使学生的概念知识系统化、条理化。 最后要解题及反思,解题是使学生熟练掌握概念和数 学方法的手段。,3、运用。数学概念的运用是指学生在理解概念的基础 上,运用它去解决同类
5、事物的过程。数学概念的运用 有两个层次:一是知觉水平上的运用,是指学生在获 的同类事物的概念后,当遇到这类事物的特例时,就 能立即把它看作这类事物中的具体例子,将它归入一 定的知觉类型;另外一种是思维水平上的运用,是指 学生学习的新概念被纳入水平较高的原有概念中,新 概念的运用必须对原有概念重新组织和加工,以满足 解当时问题的需要。因此数学概念运用的设计应注意 精心设计例题和习题,着重强调数学概念的简单运用 和灵活运用。,为了帮助学生透彻理解并掌握所学的概念,教师应注意一下问题:,1.加强对数学概念的解剖分析 2.利用变式,突出概念的本质属性 3.注意概念的对比和直观化 4.注意概念体系的建构
6、 5.注意概念产生的背景,见书:分母有理化教学过程,2.1.2概念形成的教学设计,案例:(见书)映射的概念,数学概念形成的教学模式,数学概念形成是从大量的实际例子出发,经过比较,分类从中找出一类事物的本质属性,然后通过具体的例子对所发现的属性进行检验与校正,最后通过概括得到数学概念的定义. 数学概念的形成是由特殊到一般,由具体到抽象的过程.因此对于那些初次接触或较难理解的数学概念,可以采取概念的形成方式进行学习.其教学过程为: 提供概念例证-抽象出本质属性,形成初步概念-概念的深化-概念的运用,1、概念形成的教学模式,操作步骤,2.数学概念形成的教学案例,课题:任意角(见书),2.1.3概念同
7、化的教学设计,概念同化是美国心理学家戴维奥苏伯尔提出的一种概念学习形式,指的是新信息与原有的认知结构中有关概念相互发生作用,实现新旧知识的意义的同化,从而使原有认知结构发生某种变化. 概念的同化实质上是学习者利用已掌握的概念去理解新概念,或者对原有概念重新进行加工整理的过程,它是一种有意义的学习.,以概念同化的方式来学习新概念必备的3个条件:,(1).学习者必须具备我要学的动力. (2).新概念必须有逻辑意义 (3).学生原有的认知结构中必须具备同化新概念所需要的基础.,概念同化是由一般到特殊,由总结概括概念认识从属概念的过程,具体心理发展过程如下: (1)揭示概念的本质属性,给出定义,名称和
8、符号 (2)对概念进行特殊分类,用变式的方法突出本质 属性 (3)建立新旧概念之间的联系 (4)辨认肯定例证和否定例证,使新旧概念精确分化 (5)通过实际应用强化概念,将新概念纳入相应的概念体系中.,1.数学概念同化的教学模式 数学概念同化的学习过程是直接揭示数学概念的本质属性,通过对概念的分类和比较,建立与原有认知结构中的有关数学概念的联系,明确新的数学概念的内涵与外延;再通过实例的辨认,将新数学概念与原有认知结构中的某些概念相区别;并将新的数学概念纳入到相应的数学系统中,从而完善原有的认知结构,即在数学概念的教学当中,把概念的意义直接以定义的形式呈现给学生,学生再利用自己认知结构中已有的适
9、当知识和观念理解其意义,从而获得新的概念.,概念同化的教学过程: 提供定义-解释定义,突出关键属性 -辨别例证,促进迁移-运用概念,2.数学概念同化的教学设计案例 函数的单调性,案例 “代数式概念”两种教学设计的对比,( 1)介绍代数式概念直接端出第三个馒头。 (2)给出一些代数式、非代数式的例子,带领学生参照概念的定义,辩别哪些是代数式,哪些不是代数式教师示范吃第三个馒头的过程。 (3)提供若干个辨别代数式的练习,让学生仿照刚才的方法解决它们学生吃第三个馒头的过程。,第一种“代数式概念”教学的设计是:,(1)按图示的方式,搭1个正方形需要4根小棒,搭2个正方形需要 要小棒。需要 根小棒,搭3
10、个正方形需要 根小棒,搭4个正方形 (2)搭10个这样的正方形需要多少根小棒?搭100个这样的正方形呢?你是怎样想到的? (3)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根小棒?你是怎样表示搭x个这样的正方形需要多少根小棒的?与同伴进行交流。,第二种“代数式概念”教学的设计是:,出示右图: , , ,对两种设计的点评:,第二种设计是让学生通过活动来认识理解代数式概念的。学生在这一活动中经历了一个有价值的探索过程:如何由若干个特例归纳出其中所蕴含的一般数学规律;同时,尝试用数学符号表达自己的发现,与同伴交流。在活动中,学生不仅接触到了代数式,更了解到为什么要学习代数式,还通过经
11、历应用数学解决问题的过程感受到了数学的价值。当然,从事这个探索性活动也非常有益于学生归纳能力的发展,进一步来说,活动过程本身也是一个锻炼克服困难的意志、建立自信心的过程,还是实现数学思考、解决问题、情感与态度等目标的途径。,数学教学内容的设计 -数学原理的教学设计,数学原理学习的本质,1.原理的学习实际上是学习一些概念之间的关系 2.原理学习不是习得描述原理的言语信息,而是习得原理的心理意义,它是一种有意义的学习 3.原理学习实质上是习得 产生式。只要条件信息一满足,相应的行为反应就自然出现。学习者据此指导自己的行为并解决遇到的新问题。 4.习得原理不是孤立地掌握一个原理,而是要在原理之间建立
12、联系,形成原理网络。,原理主要包括公式、法则、定理和性质。,数学原理学习的四种水平,了解 能回忆出原理的言语信息;能辨认出原理的常见例证;会举例说明原理的相关属性,理解 能把握原理的本质属性;能与相关原理建立联系;能区别原理的例证与反例。,掌握 在理解的基础上,能直接把原理运用于新的情境。,综合运用 能综合运用原理解决问题。,数学原理学习的形式,1.由例子到原理的学习:指从若干例证中归纳出一般结论的学习。它是一种发现学习。他对学生的认知水平要求比较高,他概括的是由某些概念构成的特定关系。 2.由原理到例子的学习:指先向学生呈现要学习的原理,然后再用实例说明原理,从而使学生掌握原理的学习。这是一
13、种接受学习。,例子-原理的教学设计 1.例子-原理的教学模式 是一种由特殊到一般,由具体到抽象的过程。 其教学过程为:提供丰富的例证-提出假设-验证假设、进行推理论证和概括-提炼思想方法和原理的运用。,案例:三角形三边的关系,2.原理-例子的教学设计 条件是学生必须事先掌握构成原理的各个概念和原理。,案例:两角差的余弦公式,例题、练习设计,数学例题的设计,常规课堂教学,从应用的用途上分:有数学例题、数学习题、数学讨论等几种。,1、数学例题的设计,数学例题的设计具有引入新知识、解题示范、加深 理解、提高能力等功能。例题的选择应具有目的性、典型性、启发性、科学性、变通性和有序性。课本例题一般具有典
14、型性和示范性,但设计时不排除对课本例题的深入剖析、改造与深化。,例题的设计一般分例题的选择、例题的编排。,2、数学习题的设计,习题按题型可分封闭性和开放性的习题.,选择习题的原则: 温故原则:即选择容纳尽可能多的知识点的习题 解疑原则:即针对学生的学习误区设计习题 普化原则:即设计能从中提炼数学通性、通法以 及可以普遍化的习题。,习题可分求解题和求证题.,习题客观性题和主观性题.,习题的编制,1、演绎法 这是一种从一般真命题或一组条件出发,通过 逻辑推理编制数学习题的方法。,例1 有这样一个真命题“二次方程 有实根 ”据此,可任意取 ,从 而编拟出一类条件不等式题。,2、倒推法,这时一种先给出
15、题目预期结果,由此结果倒推处所需要的条件的一种编制数学习题的方法。,如根式 的编制,分为 四步: 1)任写出一个数字 为方程的根。 2)写一个包括2的数字恒等式。如 2+4=6即 3)把16写成关于 的代数式,4),3、基本量法,在这个问题系统中,存在着n个量,使其余所有量都可以用这n个量来表示,而这n个量中的任何一个都不能用其他n-1个量来表示,我们就称这n个量为基本量。通过给出基本量来编制数学习题的方法叫做基本量法。 a=5,b=12,c=13,4、模拟法,根据已知题目的数量特征、结构特征、图形特征或求解思路,进行模仿编拟。为了得到更有创新性的题目 这种模拟不仅需要类比,而且还常常作推广。
16、,5、改编法,就是直接将概念、定理、成题改编为题目,常用的方法有:仿造、推演、转化、逆转、改变信息形态、改变条件或结论等。,6、数学开放性问编制,数学封闭性问题一般指条件完备、结论确定唯一的数学问题。,数学开放性问题是指数学问题中对探求目标只作原则 性要求,其正确结论的个数不确定。,数学开放性问题的特征,(1)、非完备性。,(2)、不确定性。,(3)、发散性和探究性,(4)、层次性。,(5)、教师的主导性。,(6)、创新性,数学开放性问题设计的方法,(1)、弱化封闭性问题的条件,使其结论多样化。 例如,弱化命题“怎样将一个正方形分割成9个同样大小的小正 方形”的限制条件“同样大小的”,可得到以
17、下开放性问题: 怎样将一个正方形分割成9个小正方形。 (2)、隐去封闭性问题的结论,使其指向多样化。,例如,如图,0是等腰梯形ABCD的内切圆,M、N、P分别 为0与AB、CD、BC的切点,求证:OCOM=CPBO,OP=CNBM 隐去此题的结论“OCOM=CPBO, OP=CNBM”,把它改编成具有多种指向 的开放性问题:如图,0位等腰梯形ABCD,的内切圆M,N,P分别为0与AB,CD,BC的,切点,由这些条件可得到哪些结论?本题可以 从1)解的互余;2)角的互补;3)线段的相等;4)线段的和、差 关系;5)支线的相互垂直;6)比例线段;7)线段的比例中项 关系;8)相似三角形;等方面去探
18、索结论。,(3)、在给定的条件下,探求多种结论。 这种方法与上述“隐去封闭性问题的结论”方法具有相似之处, 不过隐去结论需封闭性问题作基础,这里则可更加“任意”与 “自由”地构建条件或关系,使得在这种情形下引出多种结论。 例如,在三角形ABC中,a=3,b=4,在此条件下可得什么结论? 本题可以从三角形的边、角、面积、角的平分线、中线、外接 圆半径、内切圆半径以及三角形的形状等多种角度加以探讨。 (4)、给定结论,寻求使结论成立的充分条件。 例如,已知四边形ABCD,仅从下列条件中任取两个加以组合, 能否得出ABCD是平行四边形的结论? ABCD;BCAD;AB=CD;BC=AD;A=C; B=D;,这道开放性问题可以在进行“平行四边形 A B 的判定”
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版场项目投标失败后人力资源配置调整合同
- 2025版办事处环保设施建设及运营管理协议
- 二零二五版范文范本:高科技产业研发合作协议
- 宝宝饮食健康课件
- 2025版智能办公区使用权租赁合作合同
- 二零二五年度环保绿色能源项目租赁服务协议
- 二零二五年财务主管在职期间保密义务及违约责任合同
- 2025版笔译服务与翻译服务标准化合同
- 2025年度越野车抵押租赁经营合同
- 二零二五年度材料运输合同范本(含应急预案)
- 2025年中国工程质量检测行业市场前景预测及投资价值评估分析报告
- 宁夏资环技术有限公司招聘考试真题2024
- 老年教育中的心理健康与社会支持研究-洞察阐释
- 2025年工程造价与管理考试题及答案
- 2025年第一季度烟花爆竹安全作业特种作业操作证考试试卷(新手实战卷)
- 2025至2030中国烫金箔行业发展趋势分析与未来投资战略咨询研究报告
- 2025版护理十大安全目标
- 2025年 荆州市荆发控股集团招聘考试笔试试卷附答案
- 2025云南省初中学业水平考试数学
- 2025年 长春中医药大学附属医院招聘考试笔试试题附答案
- 学校关工委管理制度
评论
0/150
提交评论