




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.,(5)两平面平行的判定 定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点. 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b,ab=P,a,b,则. 垂直于同一直线的两平面平行.即若a,a,则. 平行于同一平面的两平面平行.即若,则. 一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b,c,d,ab=P,ac,bd,则.,.,例1、,7、正方体ABCDA1B1C1D1中(1)求证:平面A1BD平面B1D1C; (2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1平面FBD,.,例2、,10、如图,在正方体
2、 ABCDA1B1C1D1 中,E、F、G分别是AB、AD、C1D1的中点. 求证:平面D1EF平面BDG.,.,(6)两平面垂直的判定 定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角a=90. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l,l,则. 一个平面垂直于两个平行平面中的一个,也垂直于另一个.即若,则.,.,例3、,已知四棱锥PABCD,底面ABCD是菱形, 平面ABCD,PD=AD, 点E为AB中点,点F为PD中点. (1)证明平面PED平面PAB;,.,例4、,在四面体中ABCD, ,且E、F分别是AB、BD的中点, ()
3、求证:直线EF/面ACD (II)求证:面EFC面BCD,.,六、直线在平面内的判定,(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内. (2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若,A,AB,则AB. (3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若Aa,ab,A,b,则a. (4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P,P,Pa,a,则a. (5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a,A,Ab,ba,则b
4、.,.,七、存在性和唯一性定理,(1)过直线外一点与这条直线平行的直线有且只有一条; (2)过一点与已知平面垂直的直线有且只有一条; (3)过平面外一点与这个平面平行的平面有且只有一个; (4)与两条异面直线都垂直相交的直线有且只有一条; (5)过一点与已知直线垂直的平面有且只有一个; (6)过平面的一条斜线且与该平面垂直的平面有且只有一个; (7)过两条异面直线中的一条而与另一条平行的平面有且只有一个; (8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.,.,九、射影及有关性质,(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.
5、(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影. 和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线. (3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影. 当图形所在平面与射影面垂直时,射影是一条线段; 当图形所在平面不与射影面垂直时,射影仍是一个图形. (4)射影的有关性质 从平面外一点向这个平面所引的垂线段和斜线段中: (i)射影相等的两条斜线段相等,射影较长的斜线段也较长; (ii)相等的斜线段的射影相等,较长的斜线段的射影也较长; (iii)垂线段比任何一条斜线段都短
6、.,.,高考题练习,1(本小题满分12分) 如图:已知直三棱柱ABCA1B1C1,ABAC,F为棱BB1上一点,BFFB121,BFBC2a。 (I)若D为BC的中点,E为AD上不同于A、D的任意一点,证明EFFC1;,.,2.在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP. 设O点在平面D1AP上的射影是H,求证:D1HAP;,.,3如图,在四棱锥 中,底面ABCD是正方形,侧棱 底面ABCD, ,E是PC的中点, 作 交PB于点F。 (I)证明 平面 EDB ; (II)证明 平面EFD;,.,4、如图,在棱长为1的正方
7、体ABCDA1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点. (I)试确定点F的位置,使得D1E平面AB1F;,.,5、已知长方体ABCDA1B1C1D1中,AB=BC=4,AA1=8,E、F分别为AD和CC1的中点,O1为下底面正方形的中心。 ()证明:AF平面FD1B1;,.,6、04(19)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直, AB=根号2,AF=1,M是线段EF的中点. ()求证AM平面BDE; (II)求证AM平面BDF;,.,7、06(17)如图,在四棱锥 中, 底面为直角梯形, , 底 面ABCD,且 ,M、N分别为PC,PB的中点. () 求证
8、 ;,.,8、07(20) 在如图所示的几何体中, 平面ABC, 平面ABC, ,且 , M是AB的中点 (I)求证 : ;,.,9、08(20)如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE/CF, 角BCF=角CEF=90度,AD=根号3,EF=2。 ()求证:AE/平面DCF;,.,预测题定向提高练习,预测(1) 线面平行+线面垂直 已知线段 矩形ABCD所在平面,M、N分别是AB,PC的中点。 ()求证: 平面PAD; (II)当 时,求证: 平面PCD。,.,预测(2) 线面平行+线面垂直 如图,已知正三棱柱 中, ,点D为 A1C1 的中点。()求证: 平面AB1D; (II)求证: 平面AB1D。,.,预测(3) 线线垂直+线面平行 如图,在四棱锥 中, ()求证: ; (II)试在线段PB上找一点M,使 平面PAD,并说明理由。,.,预测(4) 线面垂直+线面平行+线面角 如图,在四棱锥 中,底面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度户外广告牌安装工程合同样本
- 二零二五年度☆高科技企业研发项目合同管理实务
- 二零二五年度绿色办公耗材采购与回收利用合同参考
- 2025版不锈钢栏杆新型材料研发与应用合同范本
- 2025版常年法律顾问合同(民商事争议解决专版)
- 二零二五年住宅租赁与租后增值服务合同
- 2025版建筑垃圾处理合同范本全新出炉
- 二零二五年度厂区物业能耗监测与合同
- 二零二五年度环保技术咨询服务合同
- 2025版豪华轿车抵押担保交易合同
- 血液与免疫系统课件
- 检修安全培训教材
- 2020长沙市一中新高一入学分班考试试卷
- 洗浴中心的物业管理方案
- 人教版七年级(初一)数学上册全册标准课讲义终稿(教师版)
- 盐酸安罗替尼三线治疗非小细胞肺癌(NSCLC)的疗效和安全性的III期临床试验
- 语文课堂风景线智慧树知到答案章节测试2023年山东师范大学
- 术后换药 (头颈外科)
- 二手车买卖合同电子版下载
- 外科考试题库及复习资料(唐都医院)
- YS/T 534.5-2007氢氧化铝化学分析方法第5部分:氧化钠含量的测定
评论
0/150
提交评论