




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、泊松分布的应用泊松分布的应用摘要泊松分布是指一个系统在运行中超负载造成的失效次数的分布形式。它是高等数学里的一个概念,属于概率论的范畴,是法国数学家泊松在推广伯努利形式下的大数定律时,研究得出的一种概率分布,因而命名为泊松分布。作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。本文对泊松分布产生的过程、定义和性质做了简单的介绍,研究了泊松
2、分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。关键词:泊松过程;泊松分布;定义;定理;应用;一、 计数过程为广义的泊松过程1计数过程设为一随机过程, 如果是取非负整数值的随机变量,且满足s 100,p0.1,np10时,二项分布可用参数为=np的泊松分布来近似,即 这就是二项分布的泊松逼近。当然n应尽可能地大,否则近似效果往往不佳。二项分布的泊松近似常常被应用于研究稀有事件(即每次试验中事件出现的概率p很小),当伯努利试验的次数n很大时,事件发生的频数的分布。实际表明,在一般情况下,当p0.1时,这种近似是很好的,甚至n不必很大都可以,这点从比较二项分布与泊松分布的概率分布表也可以
3、看出。例如,当p=0.01时,甚至n=2时,这种近似程度已经很好了。表1说明了这一情况,其中np=0.02。表一 二项分布与泊松分布的比较2.泊松分布与正态分布之间的关系由定理1和定理2可知二项分布既可以用泊松分布近似,也可以用正态分布近似。显然,泊松分布和正态分布在一定条件下也具有近似关系,下面的定理说明泊松分布的正态逼近。定理 对任意的ab,有,其中如前文所述,二项分布的泊松近似和正态近似各自适用的条件是不同的。当p很小时,即使n不是很大,用泊松分布近似二项分布,已经相当吻合。但是在这种倩形下,用正态分布去近似二项分布,却会产生较大的误差。直观上也可以想象得到,p很小,n又不大,则np=一
4、定不会很大。由上述定理可知,正态分布就不能很好地近似泊松分布,因而也就不能近似被泊松分布十分逼近的二项分布。在n充分大,P既不接近于0也不接近于1时(实际上最好满足0.1p0.9),用正态分布去近似二项分布,效果就较好。表2是用泊松分布与正态分布去近似二项分布b(n,p)的比较,其中,n=2500,p=0.02,np=50, 7。可见,在数值上三者是大致相等的。表二 泊松分布、正态分布、二项分布的比较由上述定理易知,泊松分布X()当极限分布是正态分布N(,)。 综上所诉,二项分布b(n,p)的参数n很大,p很小,而=np大小适中时,二项分布可用参数为=np的泊松分布来近似;泊松分布泊松分布X(
5、)当充分大时的极限分布是正态分布N(,),并且泊松分布的分布函数()与正态分布的分布函数N(,)近似相等。六、 泊松分布的应用1. 二项分布的泊松近似常常被应用于研究稀有事件,即每次试验中事件出现的概率p很小,而贝努里试验的次数n很大时,事件发生的概率。例1 通过某路口的每辆汽车发生事故的概率为p = 0.0001 ,假设在某路段时间内有1000 辆汽车通过此路口,试求在此时间内发生事故次数X的概率分布和发生2次以上事故的概率。分析首先在某时间段内发生事故是属于稀有事件,观察通过路口的1000辆汽车发生事故与否,可视为是n = 1000次伯努里试验,出现事故的概率为p = 0.0001 ,因此
6、X是服从二项分布的,即。由于n = 1000很大,且p = 0.0001很小,上面的式子计算工作量很大,则可以用:求近似.注意到,故有.2. 泊松分布可以计算大量试验中稀有事件出现频数的概率。这里的频数指在相同条件下, 进行大量试验,在这大量试验中,稀有事件发生的次数。例2 已知患色盲者占0.25 %,试求: 为发现一例色盲者至少要检查25人的概率; 为使发现色盲者的概率不小于0.9 ,至少要对多少人的辨色力进行检查?分析设X表示恰好发现一例患色盲者所需要检查的人数,则。解设至少对n 个人的辨色能力进行检查,于是p xn0.9。从而:由,得.因此至少要检查920人。3.泊松分布在生物学中的应用
7、: 在生物学研究中, 服从泊松分布的随机变量是常见的,如每升饮水中大肠杆菌数, 计数器小方格中血球数, 单位空间中某些野生动物或昆虫数等都是服从泊松分布的。泊松分布在生物学领域中有着广阔的应用前景,对生物学中所涉及到的概率研究起到了重要的指导作用。例3:泊松分布在估计一个基因文库所需克隆数中的应用判断基因克隆过程的分布情况:由于基因组DNA是从大量细胞中提取的, 每个细胞中均含有全部基因组DNA, 那么每一种限制性片段的数目是大量的, 因此可以说各限制性片段的数目是相等的。在基因克隆中,基因组DNA 用限制性酶切割后与载体混合反应以及随后的过程均是随机的生化反应过程。一, 对克隆来说一限制性片
8、段要么被克隆、要么不被克隆, 只有这两种结果;第二, 由于总体限制性片段是大量的, 被克隆的对总体影响很小; 第三, 在克隆中一片段被克隆的概率为f( f较小) , 不被克隆的概率为1- ,f 且克隆时这两种概率都不变。综上所述, 基因克隆过程符合泊松分布。设p为基因被克隆的概率; N 为要求的克隆的概率为p时一个基因文库所需含有重组DNA 的克隆数; f为限制性片段的平均长度与基因组DNA 总长度之比, 若基因组DNA 被限制性酶切割成n个DNA 片段,f即。则在克隆数为N 时,任一段被克隆一次或一次以上的概率为,可推出,一般要求目的基因序列出现的概率p的期望值定为99%,那么。 在分子生物
9、学中,上述一个完整的基因文库所需克隆数的估计对基因克隆实验方案的设计具有重要意义。4. 泊松分布在物理学中的应用:泊松分布在物理学中的应用十分广泛,如热电子的放射,某些激光场的分布等等都服从泊松分布。例4:对某一放射性物质而言, 各相邻原子群体之间, 其中一个原子核的衰变, 对相邻的原子核而言, 可视为外界的变化, 而这种外界的变化, 不会影响相邻原子核的衰变过程。即在某一放射性物质中, 各个原子核的衰变过程, 互不影响, 相互独立。因此衰变过程满足独立性。放射性原子核的衰变过程是一个相互彼此无关的过程,所以放射性原子核衰变的统计计数可以看成是一种伯努利试验问题。若在一个原子核体系中,单位时间原子核发生衰变的概率为,则没有发生衰变的概率为。由二项分布得到,在t时间内的核衰变数为n的概率为。 (1)由于在放射性衰变中,原子核数目很大,而p相对很小,并且满足,所以上式可以近似化为泊松分布,因为此时,对于附近的值可得到:带入(1)式中得到:令,得到:,即为泊松分布。并且有。参考文献 1 魏宗舒等. 概率论与数理统计教程M . 高等教育出版社.1983. 10. 2 复旦大学编. 概率论(第一册) . 概率论基础M . 人民教育出版
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿山智能化开采中无人作业技术智能化数据分析与应用报告
- 企业集团账户管理办法
- 临时培训学员管理办法
- 保定爆竹烟花管理办法
- 2025年家具制造业个性化定制生产模式下的个性化设计软件应用报告
- 住宅新建项目管理办法
- 信息设备保密管理办法
- 云南花卉繁殖管理办法
- 临安社保征缴管理办法
- 企业员工出勤管理办法
- 哈尔滨市普通住宅小区物业服务等级指导标准
- 汉语文化传播研究:以中国语言文化为视角
- 电梯电气装置绝缘电阻检测记录
- 医疗机构消防安全管理
- 食堂食品安全应急处置方案
- 退出中华人民共和国国籍申请表
- 西方经济学(第二版)完整整套课件(马工程)
- 检验科安全管理制度汇总
- 英语音标拼读方法讲解
- MT 113-1995煤矿井下用聚合物制品阻燃抗静电性通用试验方法和判定规则
- GB/T 16841-2008能量为300 keV~25 MeV电子束辐射加工装置剂量学导则
评论
0/150
提交评论