圆的切线长定理.ppt_第1页
圆的切线长定理.ppt_第2页
圆的切线长定理.ppt_第3页
圆的切线长定理.ppt_第4页
圆的切线长定理.ppt_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、切线长定理,学习目标 1.通过自学掌握切线长定理及相关推论; 2.理解三角形内切圆及内心; 3.能够灵活运用切线定理解决数学问题。 自学指导:阅读课本P9697思考上面部分 1.阅读探究掌握切线长定理及其推导过程; 2.思考切线长定理是否有其他推论(图24.212); 3.阅读思考理解内切圆及内心的定义; 4.阅读例2完成P96 练习1、2,如图,纸上有一O ,PA为O的一条 切线,沿着直线PO对折,设圆上与点A 重合的点为B。,1.OB是O的一条半径吗?,2.PB是O的切线吗?,3.PA、PB有何关系?,4.APO和BPO有何关系?,数学探究,问题:,经过圆外一点作圆的切线,这点和切点之间的

2、线段的长叫做切线长。,数学探究,O,切线长和切线的区别和联系: 切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。,已知:,求证:,如图,P为 O外一点,PA、PB为 O的切线,A、B为切点,连结PO,切线长定理 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。,O,一、判断 (1)过任意一点总可以作圆的两条切线( ) (2)从圆外一点引圆的两条切线,它们的长相等。,练习,(1)如图PA、PB切圆于A、B两点, 连结PO,则 度。,P,B,O,A,二、填空,25,(3)如图,PA、PB、DE分别切O于A、B、C,DE分别交PA,PB于D、E

3、,已知P到O的切线长为8CM,则 PDE的周长为( ),A,A 16cm,D 8cm,C 12cm,B 14cm,D,C,B,E,A,P,例2、如图,过半径为6cm的O外一点P作圆的切线PA、PB,连结PO交O于F,过F作O切线分别交PA、PB于D、E,如果PO10cm, 求PED的周长。,数学探究,思考:连结AB,则AB与PO有怎样的位置关系? 为什么?,你还能得出什么结论?,E,已知:如图PA、PB是 O的两条切线,A、B为切点。直线OP交 O于D、E,交AB于C。,(2)图中的直角三角形有 个,分别是,3,6,2,3,60,(5)如果PA=4cm,PD=2cm,试求半径OA的长。,x,即

4、:,解得: x=,3cm,半径OA的长为3cm,例1、如图,PA、PB是O的切线,A、B为切点,OAB30 (1)求APB的度数; (2)当OA3时,求AP的长,随堂训练,(2)观察OP与BC的位置关系,并给予证明。,(1)若OA=3cm, APB=60,则PA=_.,如图,AC为O的直径,PA、PB分别切O于点A、B,OP交O于点M,连结BC。,试一试:已知:如图,P为O外一点,PA,PB为O的切线,A和B是切点,BC是直径。C50, 求APB的度数 求证:ACOP。,试一试:如图1,一个圆球放置在V形架中。图2是它的平面示意图,CA和CB都是O的切线,切点分别是A、B。如果O的半径为 cm

5、,且AB=6cm,求ACB。,思考:当切点F在弧AB上运动时,问PED的周长、DOE的度数是否发生变化,请说明理由。,(2)如图, ABC的内切圆分别和BC,AC,AB切于D,E,F;如果AF=2cm,BD=7cm,CE=4cm,则BC= cm, AC= AB=,11,6cm,9cm,B,D,A,C,F,E,2,7,4,例3、 已知四边形ABCD的边AB、BC、CD、DA分别与O相切于P、Q、M、N, 求证:AB+CD=AD+BC。,思考,如图,一张三角形的铁皮,如何在它上面截下 一块圆形的用料,并且使圆的面积尽可能大呢?,I,D,三角形的内切圆:,与三角形各边都相切的圆叫做三角形的内切圆,三

6、角形的内心:,三角形的内切圆的圆心叫做三角形的内心,三角形的内心是三角形三 条角平分线的交点,它到 三角形三边的距离相等。,数学探究,A,B,D,L,M,N,P,O,结论:圆的外切四边形的两组对边和相等。,已知:四边形ABCD的边 AB,BC,CD,DA和圆O分别相切于L,M,N,P。探索圆外切四边形边的关系。,C,(1)找出图中所有相等的线段,(2)填空:AB+CD AD+BC(,=),=,DN=DP,AP=AL,BL=BM,CN=CM,比较圆的内接四边形的性质:,圆的内接四边形:角的关系,圆的外切四边形:边的关系,练习四 已知:ABC是O外切三角形,切点为D,E,F。若BC14 cm ,A

7、C9cm,AB13cm。求AF,BD,CE。 ,A,B,C,D,E,F,x,x,y,y,z,z,解:设AF=Xcm,BD=Ycm,CE=Zcm则AE=AF=Xcm,DC=BD=Ycm,AE=EC=Zcm,依题意得方程组,已知:如图,O是RtABC的内切圆,C是直角,三边长分别是a,b,c. 求O的半径r.,(1)Rt的三边长与其内切圆半径间的关系,13,探究三,求直角三角形内切圆的半径,探究三,求一般三角形内切圆的半径,(2)已知:如图,ABC的面积为S,三边长分别为a,b,c. 求内切圆O的半径r.,14,小练习,1.边长为3、4、5的三角形的内切圆的半径为,2. 边长为5、5、6的三角形的

8、内切圆的半径为,3. 已知:ABC的面积S=4cm,周长等于 10cm.求内切圆O的半径r.,例:如图, ABC的内切圆O与BC、CA、AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长。,x,13x,x,13x,9x,9x,例题选讲,1、如图,ABC中, ABC=50,ACB=75 ,点O 是ABC的内心,求 BOC的度数。,随堂训练,变式:ABC中, A=40,点O是ABC的内心,求 BOC的度数。, BOC= 90+ A,2、ABC的内切圆半径为 r , ABC的周长为 l ,求ABC的面积。(提示:设内心为O,连接OA、OB、OC。),O

9、,A,C,B,r,r,r,知识拓展,若ABC的内切圆半径为 r , 周长为 l , 则SABC= lr,切线长定理 拓展,回顾反思,1.切线长定理,从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。,回顾反思,2.三角形的内切圆、内心、内心的性质,知识拓展,拓展一:直角三角形的外接圆与内切圆,1.直角三角形外接圆的圆心(外心)在_,半径为_.,2.直角三角形内切圆的圆心(内心)在_,半径r=_.,a,b,c,斜边中点,斜边的一半,三角形内部,知识拓展,3.已知:如图,PA、PB是O的切线,切点分别是A、B,Q为O上一点,过Q点作O的切线,交PA、PB于E、F

10、点,已知PA=12cm,P=70,求:PEF的周长和EOF的大小。,知识小结,直角三角形的外接圆与内切圆,1.直角三角形外接圆的圆心(外心)在_,半径为_.,2.直角三角形内切圆的圆心(内心)在_,半径r=_.,a,b,c,斜边中点,斜边的一半,三角形内部,课前训练,1、已知,如图,PA、PB是O的两条切线,A、B为切点.直线 OP 交 O 于点 D、E,交 AB 于 C. (1)写出图中所有的垂直关系; (2)如果 PA = 4 cm , PD = 2 cm , 求半径 OA的长.,知识拓展,4.RtABC中,C=90,a=3,b=4,则内切圆的半径是_.,1,5.直角三角形的外接圆半径为5

11、cm,内切圆半径为1cm,则此三角形的周长是_.,22cm,知识拓展,2.已知:两个同心圆PA、PB是大圆的两条切线,PC、PD是小圆的两条切线,A、B、C、D为切点。求证:AC=BD,试一试:如图ABC中,C90,AC6,BC8,三角形三边与O均相切,切点分别是D、E、F,求O的半径。,切线长定理:,从圆外一点可以引圆的两条切线,它们的切线长相等。这一点和圆心的连线平分这两条切线的夹角。,从圆外一点引圆的切线,这个点与切点间的线段的长称为切线长。,切线长:,知识回顾,1、如图,一圆内切于四边形ABCD,且AB=16,CD=10,则四边形的周长为( ) (A)50 (B) 52 (C)54 (D) 56,巩固练习:,2、已知:在ABC中,BC14cm,AC9cm,AB13cm,BC,AC,AB分别与O切于点D、E、F,求AF,BD和CE的长。,3、以正方形ABCD的一边BC为直径的半圆上有一个动点K,过点K作半圆的切线EF,E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论