版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、12.3.1等腰三角形(判定),授课人:谭雪利,等腰三角形的性质有哪些?,等腰三角形是轴对称图形,等腰三角形的两底角相等,等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。,复习回顾:,思考:小明想知道这两根钢索是否一样长,他已经用量角器量出底下两个内角的度数相等。请大家帮他判断这两根钢索是不是一样长呢?为什么?,猜想与归纳:,在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?,即:ABC中,若B=C,则AB与AC有什么关系?,已知:在ABC中,B=C, 求证:AB=AC. 证明: 在BAD和CAD中 B=C(已知) BAD=CAD(角平分线的性质) AD=AD(公共边
2、) BAD CAD(AAS) AB=AC,还有其它方法证明吗?想一想!,作BAC的平分线AD.,如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”),ABC中, B=C AB=AC,几何语言表示如下:,等腰三角形的判定定理:,注意:“等边对等角”前提是在同一个三角形!,例题分析:,例1: 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。,已知:CAE是ABC的外角,1=2,AD/BC,(如图),求证:AB=AC。,证明:,AD/BC,1=B,2=C,又已知1=2,B=C,AB=AC,(_),(_),(_),两直线平行,内错角相等,等角对
3、等边,两直线平行,同位角相等,练习:如图,在ABC中,D是BC的中点,DEAB, DFAC,E、F是垂足,DEDF,求证:ABAC.,证明:D是BC的中点 BD=CD DEAB,DFAC BED= CFD=90 在RtBED和RtCFD中 BD=CD(已证) DE=DF(已知) RtBEDRtCFD(HL) B= C AB=AC(等角对等边),A,B,C,D,E,F,1、如图,已知A=36,DBC=36,C=72,分别计算1,2的度数,并说明图中有哪些等腰三角形。,ABC,ABD,BCD,随堂练习:,1=36 2=72,2、如图,把一张矩形的纸沿对角线折叠,重合部分是一个等腰三角形吗?为什么?
4、,A,B,C,E,D,C,答:,重合部分是一个等腰三角形。,由折叠可知EBD= DBC, 又AD/BC, EDB= DBC,EB=ED, EDB= EBD,(等角对等边),如图,在ABC中,DF=EF,在AB上截取BD,在AC延长线上截取CE,且使CE=BD,连接DE交BC于点F,求证:AB=AC.,证明:,过点D作DG/AC交BC于点G., DG/AC,GDF=E,在DGF和ECF中,GDF=E DF=EF DFG=EFC, DGFECF(ASA),GD=CE,又CE=BD GD=BD, B= DGB, C= DGB B =C,AB=AC(等角对等边),G,能力提升:,课堂小结:,1、通过本节课的学习,你知道了等腰三角形 的判定方法有几种?,2、等腰三角形的判定定理和性质定理有什么区别?,3、注意:在运用等腰三角形的判定定理的前提是在同一个三角形中。,作业:,必做题:第79页第3、4题,82页第2题 选做题:第83页第 10 题,3、如图,AC和BD相交于点O,且ABDC,OA=OB,求证:O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重点要害部位人员管理制度(3篇)
- 中学学生社团管理团队建设制度
- 养老院外出就医制度
- 企业品牌保护与维权制度
- 2026海南省气象部门招聘应届毕业生8人(第4号)参考题库附答案
- 2026湖北省定向西安电子科技大学选调生招录参考题库附答案
- 2026福建泉州市石狮市鸿山镇人民政府招聘编外人员4人参考题库附答案
- 2026福建省面向南开大学选调生选拔工作备考题库附答案
- 2026鲁西新区南京路幼儿园招聘(山东)备考题库附答案
- 2026新疆铁道职业技术学院第一批引进高层次人才8人备考题库附答案
- 驻足思考瞬间整理思路并有力表达完整版
- 汽轮机本体知识讲解
- 湖南省长沙市外国语学校 2021-2022学年高一数学文模拟试卷含解析
- 阿米巴经营管理培训课件
- 我国的宗教政策-(共38张)专题培训课件
- 【行测题库】图形推理题库
- 中医学基础脏腑经络详解演示文稿
- ICH指南指导原则Q11原料药开发和生产课件
- 安全技术交底情况监理核查记录表
- Q∕GDW 12158-2021 国家电网有限公司重大活动电力安全保障工作规范
- 阀门基础知识下.
评论
0/150
提交评论