会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

风电功率预测问题 全国一等奖论文.doc风电功率预测问题 全国一等奖论文.doc -- 6 元

宽屏显示 收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

3风电功率预测问题摘要本文着力研究了风电功率的预测问题。根据相关要求,本文中我们分别利用ARMA模型、卡尔曼滤波预测模型和小波神经网络预测模型对该风电场的风电功率进行预测。通过对预测结果各项评价指标的综合分析,发现小波神经网络预测模型的精确度最高单台风电机组预测误差与总机组预测误差成正相关性多个风电机组的汇聚会使得总体的预测误差减小。另外,从神经网络的训练过程中,我们发现突加扰动是阻碍风电功率实时预测精度进一步改善的主要因素,风电功率的预测精度不可能无限提高。对于问题一,我们分别建立了ARMA、卡尔曼滤波、小波神经网络三种预测模型对指定的发电机组的输出功率进行了预测,取得了较为理想的结果。ARMA模型的预测精确度为75.479.3,卡尔曼滤波模型的预测精确度为81.395,小波神经网络模型的预测精确度为92.194.7,故小波神经网络的预测效果最好。对于问题二,我们分析比较了三种模型下单台机组和多机组5月21日至6月6日的平均相对预测误差,得知风电机组的汇聚会使得总体的预测误差减小。针对问题三,我们在问题一小波神经网络模型的基础上建立了遗传神经网络模型。经过仿真,我们发现该模型能显著减小峰值误差,有力地抑制时间延迟现象,有效地提高了预测的精确度。对仿真误差进行分析,我们指出突加的扰动是阻碍风电功率实时预测精度进一步改善的主要因素,预测的精度不可能无限提高。关键词ARMA,卡尔曼滤波,小波神经网络,遗传神经网络4一、问题重述随着科学技术的发展,风力发电技术也得到快速发展。因为风力具有波动性、间歇性、能量密度低等特点,风电功率也是波动的。大规模风电场接入电网运行时,大幅度地风电功率波动会对电网的功率平衡和频率调节带来不利影响。因此,如何对风电场的发电功率进行尽可能准确的预测是急需解决的问题。本文在某风电场58台风电机组输出功率数据的基础上,需解决以下问题(1)至少采用三种预测方法对给定的数据进行风电功率实时预测并检验预测结果是否满足预测精度的相关要求。(2)比较单台风电机组功率的相对预测误差与多机总功率的相对预测误差,分析风电机组的汇聚对于预测结果误差的影响,并做出预期。(3)在问题(1)的基础上,构建有更高预测精度的实时预测方法,并用预测结果说明其有效性。(4)在以上问题的基础上,分析论证阻碍风电功率实时预测精度进一步改善的主要因素。判断风电预测精度能否无限提高。二、问题分析本题是一个预测类问题,它以风力发电为背景,主要考察对于风电发电功率进行预测的能力。首先,被预测量是随时间变化的序列,被预测量随时间的变化规律具有很强的非线性,因此我们采用的算法不仅要能够对时间序列进行预测,还必须具备一定的非线性处理能力。针对问题一,我们建立三种模型,可以得到模型的预测结果。我们根据所给定的考核要求,能够计算得到模型的准确性。我们以准确性作为主要的评判标准,给出我们推荐的模型。在问题一中,我们已经得到了单台风电机组与多台发电机组功率的预测误差。进一步处理,我们可以给出单台发电机组与多台发电机组的相对误差。我们对所得相对误差数据进行统计分析,可以得到三、模型假设(1)观测数据真实可靠(2)短期内不存在大的自然灾害,例如地震、海啸以及台风等等(3)预测期间风电机组分布不变,发电机组性能不随时间发生变化5四、参数说明L滞后延迟算子ty风电功率的时间序列p自回归的阶数t零均值的系统白噪声q移动平均的阶数MSPE均方百分比误差Cap风电场的开机容量MAPE平均百分比误差1r精确度2r合格率MkPk时段的实际平均功率PkPk时段的预测平均功率N日考核总时段数m1I状态空间模型的自回归系数12,,,kXXX小波神经网络的输入参数12,,,mYYY小波神经网络的预测输出ij、jk小波神经网络权值hj隐含层第j个节点输出值ij输入层和隐含层的连续权值jb小波基函数的平移因子ja小波基函数jh的伸缩因子jh小波基函数hi第i个隐含层节点的输出l隐含层节点数m输出层节点数ynk期望输出yk小波神经网络预测输出学习效率iyBP神经网络第i个节点的期望输出ioBP神经网络第i个节点的预测输出maxa基因ija的上界mina基因ija的下界g当前迭代次数maxG最大进化次数五、模型建立1.风电功率实时预测及误差分析目前,风电功率预测的方法主要有持续预测法、时间序列法(包括AR、MA、ARMA、ARIMA等)、神经网络法(ANN)、小波分析法、支持向量机法(SVM)等。综合考虑风电功率的随机性特征和各算法的优缺点,我们选择了ARMA法、卡尔6曼滤波法和小波神经网络等三种方法对风电功率进行了预测。1.1.ARMA预测模型1.1.1.ARMA模型的基本原理ARMA模型是常用的时间序列模型,其基本的类型为(1)自回归(AR)模型。ARp为jLytet(1)其中,L为滞后延迟算子ty为风电功率的时间序列1ttLyyp为自回归的阶数t为零均值的系统白噪声。(2)滑动平均(MA)模型。MAq为tytL(2)其中,q为移动平均的阶数。(3)ARMA模型。,ARMApq为ttLyL(3)由以上三式可见,AR模型和MA模型可视为ARMA模型的特殊情况。ARMA模型的平稳条件是滞后多项式L的根在单位圆外,可逆条件为L的根都在单位圆外。ARMA模型对数据平稳性有要求,要在平稳时间序列的大前提下建模,所以要用ARMA模型预测风电功率,首先要检验风电功率时间序列的平稳性。时间序列平稳性检验常用的方法为增广DickeyFuller(ADF)检验,ADF检验包括一个回归方程111122112tttptptytycycycyt(4)上式左边为序列的一阶差分项,右边为序列的一阶滞后项、滞后差分项,有时还有常数项和时间趋势项。在进行ADF检验时,需根据实际情况选择回归中是否包括常数项、线性时间趋势及回归中的滞后阶数p的选择可根据保证t是白噪声过程的最小p值的标准进行选择。在每种情况下,单位根检验都对回归式中1ty7的系数进行检验,如果系数显著不为零,那么ty包含单位根的假设将被拒绝,ty序列即是平稳的。1.1.2.平稳性检验我们取该风电场2006年5月10日至6月6日共28天的风电功率实测数据作为研究对象,以其中前21天地风电功率数据建立模型。首先采用ADF及ACF检验来检验该时间序列的平稳性如该风电功率时间序列是平稳的,则满足ARMA模型前提如该序列不平稳,则对差分后序列建立ARMA模型,如仍不平稳,则继续做差分,直到差分后序列平稳,ARMA建模前提满足为止。各风电机组的ACF检验结果如下图所示图(1)a时间段机组ACF图图(2)b时间段机组ACF图各风电机组的ADF检验结果见表1。ADF检验统计量1临界值5临界值10临界值机组A4.0916823.4339382.8630112.567601机组B5.8303113.4406882.8659842.569195机组C4.8359243.4409732.8642532.567613机组D4.2574623.4370822.8678122.567915四台机组5.6489253.4825252.8642142.59844558台机组4.9564123.4599612.8571452.584562表1ADF检验结果比较ADF检验统计量与临界值大小,可判断时间序列是否平稳。由表1可见,以上六种情况的风电功率时间序列ADF检验统计量均小于1临界值的显著水平,所以,在95置信水平下有理由拒绝原假设,即本序列是平稳的,满足ARMA建模的前提条件,因此,可考虑将风电功率时间序列ty识别为,ARMApq结构。1.1.3.建立ARMA模型鉴于模型,ARMApq的识别具有很大的灵活性,为了得到最合理的模型,8本文采取了定阶步骤,根据时间序列的自相关、偏相关函数分析图,对多组可行阶数进行了参数估计,对所有备选模型进行模型诊断,筛选出备选模型集。由于许瓦兹信息准则SIC的强一致性,在理论层面上能够渐进地选择真实模型,所以计算备选模型集中所有模型的SIC。考虑模型的可逆性和稳定性条件,得到数据样本的ARMA模型的参数如表2。机组A机组B机组C机组D四机组58机组p222222q222221表2ARMA模型参数依照经典时间序列分析的步骤,在完成模型阶数识别后,使用极大似然估计法获得模型的参数估计模型分别为PA1212269.40571.88810.888441.27650.30239tttttyyy(5)PB1212231.71651.87620.876631.29530.32144tttttyyy(6)PC1212222.71151.88680.887121.28550.30922tttttyyy(7)PD1212236.12611.88180.882241.27820.30509tttttyyy(8)P41212959.95981.89370.894011.07670.10732tttttyyy(9)P58121122651.90130.901620.9674ttttyyy(10)1.1.4.预测结果及误差分析运用ARMA模型分别对5月31日0时0分至5月31日23时45分(记a时域)、5月31日0时0分至6月6日23时45分(记b时域)的PA,PB,PC,PD,P4,P58进行预测,得到原始风电功率和预测风电功率。预测结果如下图所示。9图(3)a时段PA功率预测曲线图(5)a时段PB功率预测曲线图(7)a时段PC功率预测曲线图(4)a时段PD功率预测曲线图(6)a时段P4功率预测曲线图(8)a时段P58功率预测曲线
编号:201311211749260822    大小:4.06MB    格式:DOC    上传时间:2013-11-21
  【编辑】
6
关 键 词:
专业文献 学术论文 精品文档 风电功率
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

4.0
 
(2人评价)
浏览:36次
上学吧上传于2013-11-21

官方联系方式

客服手机:13961746681   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

专业文献   学术论文   精品文档   风电功率  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5