yp博士论文-提交_第1页
yp博士论文-提交_第2页
yp博士论文-提交_第3页
yp博士论文-提交_第4页
yp博士论文-提交_第5页
已阅读5页,还剩90页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

分类号 学号 2005515100045 学校代码 10487 密级 博 士 学 位 论 文 极 低 密 度 脂 蛋 白 受 体 亚 型 在 肿 瘤 细 胞 中 的 变 化 及 其 意 义 探 讨 学位申请人: 杨 璞 指 导 教 师 : 屈 伸 教授 学 科 专 业 : 生物化学与分子生物学 答 辩 日 期 : 2008 年 5 月 2 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctoral of Philosophy in Science Study on the variation and function of very low density lipoprotein receptor subtypes in cancer cells Candidate : Yang Pu Supervisor : Professor Qu Shen Major : Biochemistry and Molecular Biology Huazhong University of Science and Technology Wuhan 430074, P.R.China May. 2008 独创性声明 本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得 的研究成果。尽我所知,除文中已经标明引用的内容外,本论文不包含任何其 他个人或集体已经发表或撰写过的研究成果。对本文的研究做出贡献的个人和 集体,均已在文中以明确方式标明。本人完全意识到,本声明的法律结果由本 人承担。 学位论文作者签名:杨璞 日期: 2008 年 5 月 18 日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校 有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查 阅和借阅。本人授权华中科技大学可以将本学位论文的全部或部分内容编入有 关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位 论文。 保密 ,在_年解密后适用本授权书。 不保密。 (请在以上方框内打“” ) 学位论文作者签名:杨璞 指导教师签名:屈伸 日期:2008 年 5 月 18 日 日期: 2008 年 5 月 18 日 本论文属于 4 目 录 一、主要缩写词-1 二、中文摘要-3 三、英文摘要-7 四、论文正文 1、前言-12 2、第一部分 VLDLR亚型变化与细胞生物学行为关系的探讨- -14 3、第二部分 VLDLR 亚型变化影响细胞生物学行为的机制的初 步探讨-41 4、总结-58 5、参考文献-59 五、综述-66 六、附录-85 七、致谢-86 华 中 科 技 大 学 博 士 学 位 论 文 1 主 要 缩 写 词 AS atherosclerosis 动 脉 粥 样 硬 化 VLDL very low density lipoprotein 极 低 密 度 脂 蛋 白 VLDL beta migrating very low density lipoprotein -迁 移 率 极 低 密 度 脂 蛋 白 VLDLR very low density lipoprotein receptor 极 低 密 度 脂 蛋 白 受 体 LDL low density lipoprotein 低 密 度 脂 蛋 白 LDLR low density lipoprotein receptor 低 密 度 脂 蛋 白 受 体 apoER2 apolipoprotein E receptor 2 载 脂 蛋 白 E 受 体 2 TRL triglyceride-rich lipoprotein 富 含 甘 油 三 酯 的 脂 蛋 白 CM chylomicrons 乳 糜 微 粒 LRP LDL receptor related protein 低 密 度 脂 蛋 白 受 体 相 关 受 体 PCR polymerase chain reaction 聚 合 酶 链 式 反 应 BSA bovine serum albumen 牛 血 清 白 蛋 白 FBS fetal bovine serum 胎 牛 血 清 Apo E apolipoprotein E 载 脂 蛋 白 E TERT Telomerase reverse transcriptase 端粒酶催化亚单位 ATRA all-trans retinoic acid 全 反 式 维 甲 酸 PMA phorbol-12-myristate-13-acetate 佛波酯 PKC protein kinase C 蛋 白 激 酶 C LRP1B low density lipoprotein receptor-related protein 1B 低 密 度 脂 蛋 白 受 体 相 关 蛋 白 1B SR-BI. scavenger receptor class B type I 清 道 夫 受 体 B 族 I 型 MSR macrophage scavenger receptor 巨 噬 细 胞 清 道 夫 受 体 2 LR11 a mosaic member of LDLR family LR11 uPA urokinase-type plasminogen activator 尿 激 酶 型 纤 溶 酶 原 激 活 因 子 PAI plasminogen activator inhibitor-1 型 纤 溶 酶 原 激 活 抑 制 因 子 uPA- PAI uPA-PAI complex uPA-PAI 复 合 物 uPAR urokinase-type plasminogen activator receptor 尿 激 酶 型 纤 溶 酶 原 激 活 因 子 受 体 TFPI tissue factor pathway inhibitor 组 织 因 子 途 径 抑 制 剂 bp base pair(s) 碱 基 对 Kb kilobase pair(s) 千 碱 基 对 PBS phosphate-buffered saline 磷 酸 缓 冲 液 OMEM optimize minimun essential medium 优 化 的 最 低 必 需 培 养 基 MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide 甲 基 噻 唑 基 四 唑 DMSO dimethyl sulphoxide 二 甲 基 亚 砜 MMPs matrix metalloproteinase 基 质 金 属 蛋 白 酶 VEGF vascular epidermal growth facto 血 管 内 皮 (细 胞 )生 长 因 子 Gsk3 glycogen synthase kinase 糖 原 合 酶 激 酶 3 ECM extracellular matrix 细 胞 外 基 质 MAPK mitogen-activated protein kinases 丝 裂 原 活 化 的 蛋 白 激 酶 ERK extracellular signal-regulates kinase 胞 外 信 号 调 节 激 酶 华 中 科 技 大 学 博 士 学 位 论 文 3 极 低 密 度 脂 蛋 白 受 体 亚 型 在 肿 瘤 细 胞 中 的 变 化 及 其 意 义 探 讨 中 文 摘 要 极低密度脂蛋白受体(very low density lipoprotein receptor, VLDLR)属于低密度 脂蛋白受体(low density lipoprotein receptor, LDLR)超家族。VLDLR 由于第 16 外 显子的选择性剪接从而产生胞外段 O-linked 糖链结合域缺失的亚型,根据有无此结 构域可将 VLDLR 分为型和型两种亚型。早期研究认为,该受体主要结合富含 apoE(载脂蛋白 E)的脂蛋白而参与甘油三酯的代谢;与泡沫细胞的形成及动脉粥 样硬化的发生发展相关。但由于该基因敲除的小鼠仅表现体脂下降,发育迟缓,因 此对该受体研究一直未引起足够重视。近年来的研究发现,因此 VLDLR 和 LDLR 家族的其他成员一样被认为是一种“瑞士军刀”样多功能受体。但是对两型受体的 功能差异,特别是型受体的独特功能及其生物学意义尚未阐明。 我们的前期工作和已有研究资料表明:、两型受体的分布具有明显的组织细 胞特异性:型受体主要分布于脂代谢旺盛的组织,而型受体则主要分布于肾脏、 脾脏、肾上腺、睾丸、子宫、卵巢等非肌组织。、在分化程度不同的细胞、组织 中两型受体的表达不同:在高分化的胃腺癌细胞系中,型受体低表达或不表达, 而在低分化的胃腺癌细胞系中型受体高表达;同样,在多种胃腺癌组织细胞中观 察到型受体的表达增多;宫颈癌病变组织中也检测到 VLDLR型的高表达;另外 在鸡和小鼠胚胎发育过程中 VLDLR 两种亚型的表达可发生变化:在胚胎发育早期以 型 VLDLR 的表达为主,而在发育成熟的体细胞中则以型 VLDLR 表达为主;在 胚胎脑中以型 VLDLR 表达为主,而在成熟分化的脑组织中则以型 VLDLR 表达 为主。、在退行性病变的纤维化脾组织中,型 VLDLR 则几乎消失;而在阿尔茨 海默病病人的老年斑斑块中以型 VLDLR 表达为主;、最新研究报道认为 VLDLR,尤其是 型 VLDLR,表达减少或不表达会导致肿瘤的形成;且型 4 VLDLR 在抑制肿瘤细胞生长方面作用更重要。这些现象强烈提示:VLDLR 亚型与 细胞的增殖、分化、迁移等细胞活动存在密切关系。但这种关系的生物学意义目前 尚不清楚。 uPA-PAI-1 复合物和 TFPI 是 VLDLR 已知的两种配体, VLDLR 与 uPA-PAI-1 复合物的结合可促进细胞增殖、迁移;而与 TFPI 结合可抑制细胞的增殖;这些表明 VLDLR 与不同配体结合可影响截然相反的细胞功能,但这些配体是否通过 VLDLR 亚型的变化来影响细胞生物学行为尚不清楚。 本研究首先针对 VLDLR 亚型变化与细胞增殖、迁移之间的关系进行深入研究, 探讨 VLDLR 亚型的变化与细胞生物学行为的关系和意义。 为探讨胃腺癌细胞 SGC7901 在向不同方向诱导分化过程中 VLDLR 亚型的表达 变化与细胞生物学行为之间的关系,本实验在体外,利用全反式维甲酸(ATRA )持 续诱导 SGC7901 细胞建立向高分化诱导变化的模型,利用佛波酯(PMA)持续诱导 SGC7901 细胞建立向低分化诱导变化的模型;检测端粒酶催化亚单位(TERT ) mRNA 的表达量判断细胞分化程度。结果显示:SGC7901 细胞在 ATRA 的持续作用 下,细胞向高分化转化,型 VLDLR 明显减少,同时细胞增殖活性和迁移能力逐渐 减弱; SGC7901 细胞在 PMA 的持续作用下,细胞向低分化转化, 型 VLDLR 明 显升高,同时细胞增殖活性和迁移能力增强。上述结果表明型 VLDLR 的表达变化 与肿瘤细胞分化之间存在相关性。为了深入探讨 VLDLR 亚型与细胞分化、增殖、迁 移等的关系,本实验利用能影响细胞增殖迁移的 VLDLR 的配体(uPA-PAI- 1、TFPI)与细胞温育,观察 VLDLR 亚型的表达变化与细胞生物学行为之间的关系。 实验结果发现:TFPI 抑制细胞增殖、迁移的同时可明显减少型 VLDLR,对型 VLDLR 无影响,并可使型 VLDLR 与型 VLDLR 的比值逐渐降低;uPA-PAI-1 复合物促进细胞增殖、迁移的同时可减少型 VLDLR,增加型 VLDLR,并使 型 VLDLR 与 型 VLDLR 的比值逐渐升高。 综上所述,我们的结果证实:无论是诱导分化,还是影响细胞增殖相关配体的 作用,肿瘤细胞中 VLDLR 亚型的变化具有如下规律:在低分化、增殖、迁移能力强 的细胞中同时伴有型 VLDLR 增加,在高分化、增殖、迁移能力弱的细胞中同时伴 华 中 科 技 大 学 博 士 学 位 论 文 5 有型 VLDLR 减少。这一变化规律说明型 VLDLR 在促进细胞增殖、迁移,抑制 细胞分化中扮演着重要角色。 已有的研究表明, VLDLR 在神经组织发育过程中,介导 Reelin-Dab1 信号途径, 通过 SFK/PI3K-Gsk3调节细胞骨架蛋白 Tau 而影响细胞骨架的重构和细胞迁移;在 内皮细胞增殖和迁移相关的 wnt 信号途径中 VLDLR 发挥重要的负调控作用,表明 VLDLR 在细胞增殖分化的 wnt 信号途径中发挥重要调节作用。另外,VLDLR 与 uPA-PAI-1 复合物的结合可维持胞内 ERK 的磷酸化,从而促进细胞增殖、迁移;而 与 TFPI 结合可通过通过 p16ink4a 和 p38/JNK 信号途径抑制细胞的增殖;这些表明 VLDLR 与不同配体的结合,调节与细胞增殖分化相关的 MAPK 信号体系中不同的 通路,影响截然相反的细胞功能。另有研究表明,ERK 的活化可使 GSK-3磷酸化 失活,导致-catenin 在胞内聚集,而-catenin 可促进下游包括 MMPs 在内的特异基 因的转录,影响细胞增殖、迁移。这些表明 VLDLR 与不同配体结合影响细胞功能的 信号调节作用可能与 MAPK、 wnt 途径有关。但 VLDLR 亚型的变化影响细胞生物 学行为的机制目前尚不清楚。 根据已有研究我们推测型 VLDLR 影响细胞增殖、迁移与 MAPK、wnt 信号通 路有关,因此本实验在诱导分化过程中和细胞增殖迁移调控配体的温育下,观察 VLDLR 可能涉及的信号途径的关键分子的活性及表达变化,初步探讨型 VLDLR 影响细胞生物学行为的可能机制。实验结果发现:在细胞向高分化诱导过程中和 TFPI 温育后 型 VLDLR 减少,-catenin 的磷酸化明显增强促进其降解从而使其在 胞内表达降低,同时其下游靶基因 MMP-2 和 MMP-9 的表达下调,抑制细胞增殖、 迁移;而在细胞向低分化诱导过程中和 uPA-PAI-1 温育后型 VLDLR 增加,- catenin 的磷酸化受到抑制增加其稳定性从而促进胞内表达上调,同时其下游靶基因 MMP-2 和 MMP-9 的表达上调,促进细胞增殖、迁移。因此型 VLDLR 影响细胞 生物学行为变化可能与-catenin 在胞内的表达上调,从而促进特异靶基因的转录有 关。 已有研究表明,VLDLR 与 uPA-PAI-1 的结合可维持乳腺癌胞内 ERK 的磷酸化。 我们的实验发现,uPA-PAI-1 与细胞温育 5 min 即可明显增强 ERK 的磷酸化,这种 6 作用可一直持续到 30 min,对 ERK1 的磷酸化作用在温育 60 min 后仍较明显。这与 前述研究一致。VLDLR 与 TFPI 结合可通过活化 p38/JNK 信号途径抑制细胞增殖。 我们的实验发现,TFPI 可抑制 ERK 的活化。对 LDLR 表达调控的研究发现,胞外 分子可通过激活 p38 信号途径抑制 ERK 的活性从而下调 LDLR 的表达。因此我们推 测,TFPI 可能通过活化 p38 从而抑制 ERK 的活化。上述结果提示,uPA-PAI-1 复合 物可能通过型 VLDLR 活化胞内 ERK,从而促进细胞增殖、迁移;而 TFPI 可能通 过型 VLDLR 活化 p38 从而抑制 ERK 的活化,从而抑制细胞增殖、迁移。 上述结果提示,型 VLDLR 影响细胞生物学行为的变化可能与 ERK 的活化抑 制 -catenin 的磷酸化降解使其在胞内表达上调,调节特异靶基因的转录有关。 综上所述,型 VLDLR 可能通过与特定配体的结合、摄取,影响细胞内增殖、 分化相关的信号途径,导致相应细胞生物学行为改变。本研究的创新之处在于初步 揭示了型 VLDLR 的表达变化与细胞增殖、分化、迁移之间的关系及其可能涉及的 信号转导途径,扩展了 VLDLR 功能的多样性,并对脂蛋白受体家族成员作为“瑞士 军刀”样多功能受体提供了新的认识。 关键词:极低密度脂蛋白受体,亚型,分化,增殖,迁移 华 中 科 技 大 学 博 士 学 位 论 文 7 8 Study on the variation and function very low density lipoprotein receptor subtypes in cancer cells ABSTRACT Very low density lipoprotein receptors (VLDLR), a member of low density lipoprotein receptor (LDLR) superfamily, consist of two subtypes, type I VLDLR and type II VLDLR. It is generally accepted that VLDLR plays a major role in the metabolism of triglyceride through binding lipoproteins enriched in apoE and has an intimate relation with atherosclerosis. There have been many attempts to study the biological phenotype in homozygous VLDLR knockout mice. However, the physiological and pathological importance of these receptors has not been clearly identified. Recently, VLDLR and many other members of the low density lipoprotein receptor family are found to bind different ligands besides lipoproteins, causing endocytosis and affecting many cellular functions. For example, VLDLR impacts the immigration and location of nerve cells during the early stages of embryonic development by binding the signaling molecule Reln. It can also inhibit cell proliferation by interacting with tissue factor pathway inhibitor (TFPI). In addition, VLDLR plays a certain role in the invasion and metaptosis of tumor cells. And now, VLDLR and the other members of LDLR are known as the multifunctional receptor like “Swiss army knife”. Nevertheless, the functional differences between the two VLDLR subtypes need to be further clarified, especially the distinctive biological function of type VLDLR lacking the o-linked sugar domain has not been illuminated. Studies about the distribution of these two VLDLR subtypes suggested that their distribution presents obvious tissue- and cell-specificity. Type I VLDLR is most highly expressed in heart, skeletal muscle and adipose tissue with active fatty acid metabolism, 华 中 科 技 大 学 博 士 学 位 论 文 9 while type II VLDLR is predominant in non-muscle tissue, including kidney, spleen, adrenal gland, et al. Recent studies have shown that the two VLDLR subtypes are associated with the differentiation and development of tissues and cells. The expression pattern of the two VLDLR subtypes can be changed during embryonic development of chicken and human brain. The type II VLDLR has been found to be the major receptor expressed in early phase of embryonic or fetal brain development, whereas type I VLDLR is mainly present in adult tissues. Other reports indicate that some tumor tissues and cells also express two VLDLR subtypes with inhomogeneity. The expression of the type II VLDLR increases obviously in poorly differentiated adenocarcinomas. Our previous study has also found that the type II VLDLR is mainly expressed in poorly- or moderately- differentiated human gastric adenocarcinoma cell lines, but its expression is relatively low or even can not be detected in well differentiated human gastric adenocarcinoma cell lines. Our recent studies also found that the expression of type II VLDLR is higher in uterine cervix cancer tissues than that in adjacent tissues. Type I VLDLR is the major receptor in senile plaques of Alzheimer diseased brain and type II VLDLR in congestive fibrotic spleen disappeared from the patients with liver cirrhosis. Genomic loss and epigenetic silencing of very-low-density lipoprotein receptor involved in gastric carcinogenesis and the O- linked sugar domain of VLDLR was demonstrated to relate with cell growth inhibition. These studies suggest that the type II VLDLR activities may be related to certain cellular functions other than its involvement in lipoprotein metabolism. Tissue factor pathway inhibitor (TFPI) and urokinase-type plasminogen activator and plasminogen activator inhibitor 1 (uPA-PAI-1) complex are the ligands of VLDLR, which affect different cell function through VLDLR. But whether VLDLR affect cellular function via the expression variability of two VLDLR subtypes is still unknown. Thus, we explored the expression and function of type II VLDLR during the induction of human gastric adenocarcinoma cell line SGC7901 and in cells treated with two ligands of VLDLR to explore the relationship of type II VLDLR with cell function. To 10 investigate the relationship between the expression variability of two VLDLR subtypes and cellular functions during the induction of SGC7901 cells, we use all-trans retinoic acid (ATRA) to induce SGC7901 differentiation and phorbol-12-myristate-13-acetate (PMA) to induce a change of differentiation to relatively lower. The mRNA expression of Telomerase reverse transcriptase (TERT) acts as a marker to identify the extent of cellular differentiation. The expression of two subtypes of VLDLR after treatment was detected by western blotting. The cells became well differentiated when induced by ATRA, accompanied by decrease in expression of type II VLDLR and gradually attenuated cell proliferation and migration. However, the cells became poorly differentiated when induced by PMA. These cells had increased receptor expression, and enhanced cell proliferation and migration. Our data indicate that the increased expression or the activity of type II VLDLR may be associated with the poor differentiation, and the enhanced proliferation and migration of the cells. Then, in order to further understand the expression of two VLDLR subtypes and the cellular function, we use two VLDLR ligands, uPA-PAI-1 complex and TFPI, which can affect cell proliferation and migration, to incubate with SGC7901 cells. In this study, we showed that cell proliferation and migration were inhibited by TFPI, but promoted by uPA-PAI-1 complex. In addition, we also demonstrated that TFPI treatment caused a decrease, but uPA-PAI-1 complex caused an increase, in the expression of type II VLDLR, suggesting that increasing type II VLDLR activity might be associated with augmenting cell proliferation and migration. In conclusion, the expression of type II VLDLR had a general phenomenon during the differentiation of cancer cells: the expression of type II VLDLR increased in lowly- differentiated cells with high proliferation and migration, but it decreased in highly- differentiated cells with low proliferation and migration. These indicate that the increased expression or the activity of type II VLDLR may be associated with the poor differentiation, and the enhanced proliferation and migration of the cells. It was reported that during the development of nervous tissue, VLDLR mediates 华 中 科 技 大 学 博 士 学 位 论 文 11 Reelin-Dab1 signal pathway, modulates tau phosphorylation through glycogen synthase kinase-3beta cascade and affects tissue remodeling and cell migration. Recent study indicates that VLDLR is a negative regulator of the wnt signaling pathway. These studies suggest that VLDLR may play an important role in wnt signal pathway. In addition VLDLR can bind with different ligands relative with proliferation, regulate different signal pathway, and affect cell function. The binding of VLDLR and urokinase-type plasminogen activator and plasminogen activator inhibitor 1 (uPA-PAI-1) complex can sustain the phosphorylation of extracellular signal-regulates kinase (ERK) to promote cell proliferation and migration. But VLDLR binding with TFPI can inhibit cell proliferation through activating p38 signal pathway. The two ligands appear to have quite different effects on cell function through VLDLR. It was reported that the activation of ERK can induce the expression of -catenin, which promote the transcription of certain target genes inclding matrix metalloproteinase (MMPs). These studies suggest that the effect of VLDLR on cell function may be related with mitogen-activated protein kinases (MAPK) signal pathway and wnt signal. But it was unclear whether the two VLDLR subtypes were regulated differently and affected cell function through dinstinct signal pathway. It was speculated that the role of type II VLDLR may be related with MAPK and wnt signal pathway. So we observe the possible signal pathway involved in the role of type II VLDLR. Our results indicated that the well differentiated cells induced by ATRA and the cells treated with TFPI with a significant decrease in type II VLDLR expression accompanied by a gradually attenuated -catenin and MMP-2 and MMP-9 expression, but in the poorly differentiated cells induced by PMA and in the cells treated with uPA-PAI-1 complex with an increase in type II VLDLR expression showed an increase in -catenin and MMP-2 and MMP-9 expression. These suggested that the role of type II VLDLR could be related with the aggregation of intracellular -catenin, which promotes some specific target genes transcription. In our study, uPA-PAI-1 complex can rapidly activate the ERK phosphorylation of 12 SGC7901 cells after 5 min incubation and it can sustain for at least 30 min. The phosphorylation of ERK1 can last for 1 h obviously. Thise was agreed with previous study. But TFPI can inhibit the phosphorylation of ERK. Studies about LDLR found that stress-activated p38 MAPK regulates LDL receptor expression via negatively modulation of p42/44 MAPK cascade. So it was speculated that TFPI inhibited ERK through activating p38 MAPK. These results suggest that the ligand promoting cell proliferation and migration can activate ERK through type II VLDLR; but the ligand inhibiting cell proliferation and migration can reduce the phosphorylation of ERK through type I VLDLR. Our studies suggested that the role of type II VLDLR on cell function may be related with the activation of ERK, then induce the aggregation of -catenin, promoting the transcription of some specific down-stream genes to affect cell function. These suggested that type II VLDLR may play an important role in promoting cell proliferation and migration, and inhibiting cell differentiation. In conclusion, type II VLDLR may bind and internalize specific ligand, mediate the relative signal pathway, and affect cell function. Our study revealed the relationship between type II VLDLR and cellular function and the possible related signal pathway, which provided profound views of VLDLR function and new cognition of lipoprotein receptor as a cellular Swiss army knife. Keywords:very low density lipoprotein receptor, subtypes, differentiation, proliferation, migration 华 中 科 技 大 学 博 士 学 位 论 文 13 正 文 极 低 密 度 脂 蛋 白 受 体 亚 型 在 肿 瘤 细 胞 中 的 变 化 及 其 意 义 探 讨 前 言 极低密度脂蛋白受体(very low density lipoprotein rece

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论