基于光电传感器的奔跑速度检测系统设计.doc_第1页
基于光电传感器的奔跑速度检测系统设计.doc_第2页
基于光电传感器的奔跑速度检测系统设计.doc_第3页
基于光电传感器的奔跑速度检测系统设计.doc_第4页
基于光电传感器的奔跑速度检测系统设计.doc_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

单位代码 01 学号 090119012 分 类 号 tn79.1 密 级 毕业设计说明书奔跑速度检测系统电路设计 院(系)名称信息工程学院 专业名称测控技术与仪器 学生姓名 指导教师 2013年 5 月 10 日 黄河科技学院毕业设计说明书 第32页 奔跑速度检测系统电路设计摘 要随着信息技术的不断发展,单片机在测量系统中得到了广泛的应用。速度是一个系统经常需要测量、控制和保持的量,速度是否达到要求,决定着生产及工业过程是否产生相应的效果。速度的测量方法有许多种,但在不同的应用环境下,相应的测量方法有它自己的特点和误差。因此对单片机速度测量系统的研究有着重要的目的和意义。本设计采用at89c51单片机作为主要控制核心,应用光电传感器采集信号,经过单片机定时计数并运用一个算法测量出奔跑物体的行驶速度,最终用4位led数码管显示其测量结果,硬件电路简单,软件功能完善,测量速度快、精度高,成本低等特点,充分发挥了单片机的控制功能,与所学知识紧密结合,学以致用,有很高的的使用价值。关键词:单片机,速度测量,光电传感器,ledrunning speed measurement system designauthor: li qinhaitutor:yang quanjiu abstractwith the continuous development of information technology, single-chip microcomputer has been widely used in the measurement system. speed is a systems often need to measure, control and maintain, speed whether meet the requirements, determine the production and industrial processes produce corresponding results.speed measurement method has many kinds, but in different application environment, the corresponding measurement method has its own characteristics and error. so the study of microcontroller velocity measurement system has important purpose and meaning. this design uses at89c51 as the main control core, using photoelectric sensors to collect signal, through single chip microcomputer timer counter and use an algorithm to measure the car speed, eventually with four led digital tube display the measurement results, has high practical value. this article is give full play to the advantages of the performance of the single chip microcomputer, introduces the basic principle of the speed measuring method, implementation steps and the hardware and software design, hardware circuit is simple, software function is perfect, fast measurement speed, high precision, low cost etc.key words: single chip microcomputer; velocity measurement; photoelectric sensor; the led目 录1 绪论11.1 奔跑速度检测系统的发展背景及现状11.2 本课题的目的和意义21.3 本课题设计的主要内容32 奔跑速度检测系统原理43 系统方案提出和论证54 系统的硬件设计54.1 光电传感器介绍54.1.1 光电传感器工作原理54.1.2 光电传感器54.1.3 光电传感器的类型及工作方式54.1.4 pm12光电传感器54.2 信号处理电路的设计54.3 单片机at89c51介绍54.4 最小系统的设计54.4.1 复位电路54.4.2 晶振电路54.5 led显示部分电路设计54.5.1 led基本结构54.5.2 led显示器的选择54.5.3 led译码方式54.5.4 led显示器与单片机接口设计55 系统软件设计55.1 主程序初始化55.2 主程序流程图程序流程图5总结5致谢5参考文献5附录5附录a 系统总电路图5附录b 系统总程序清单51 绪论1.1 奔跑速度检测系统的发展背景及现状从人类开始研究物体运动,速度就成为人们测量的对象。随着科学技术的不断发展,测量速度的科技手段也在日新月异,为人类的研究自然带来更大的自由。速度是物理学中的一个重要的概念。在运动学中速度是描述物体运动快慢的物理量,定义为位移随着时间的变化率。通过对平均速度和瞬时速度的测定,可以了解物体的运动状态和运动规律。在传统的测速方法中,多基于对奔跑物体电机的转速进行测量,并由一定的公式转换出奔跑物体的速度,这里面按照不同的理论方法,先后产生过模拟测速法(如离心式转速表、用电机转矩或者电机电枢电动势计算所得)、同步测速法(如机械式或闪光式频闪测速仪)以及计数测速法。计数测速法又可分为机械式定时计数法和电子式定时计数法。传统的电机转速检测多采用测速发电机或光电数字脉冲编码器1,也有采用电磁式(利用电磁感应原理或可变磁阻的霍尔元件等)、电容式(对高频振荡进行幅值调制或频率调制)等,还有一些特殊的测速器是利用置于旋转体内的放射性材料来发生脉冲信号。其中应用最广的是光电式,光电式测系统具有低惯性、低噪声、高分辨率和高精度的优点加之激光2光源、光栅、光学码盘、ccd器件、光导纤维等的相继出现和成功应用,使得光电传感器在检测和控制领域得到了广泛的应用。本课题中采用技术成熟的光电传感器来直接测量奔跑物体的奔跑速度,采用光电传感器进行奔跑速度测量,准确度高、采样速度快、测量范围宽和测量精度与被测转速无关等优点,具有广阔的应用前景。速度测量目前主要运用在汽车行业,如今的汽车工业正是朝着智能化,数字化发展,人们享受速度所带来的高效率同时,却要面对安全的巨大阴影,甚至有些人对汽车产生恐惧,在高速行驶的汽车上,什么事情都有可能发生。超速,简言之,速度的控制成为汽车智能化控制的关键,真正的“主动型安全装置”应该是对速度的检测,据说英法两国已经研究出一种电子仪器,能够接收速度检测信号,从而使汽车保持在一定的安全速度之下,已经成功地运用在一些家庭轿车和出租车上。在20世纪60年代,汽车上仅有机油压力传感器、油量传感器和水温传感器,它们与仪表或指示灯连接。进入70年代后,为了治理排放,又增加了一些传感器来帮助控制汽车的动力系统,因为同期出现的催化转换器、电子点火和燃油喷射装置需要这些传感器来维持一定的空燃比以控制排放。目前见到的许多关于汽车车速与控制类文献中,以研究无刷直流电机较多,采用光电式传感器电机的重要元件。霍尔传感器的车速检测装置由cd板控制3,能够做出电机加速,减速的动作,还能够精确测速电机的转速,来控制电机的工作情况等多种功能。在2004年上海大众智能设备有限公司也推出一种汽车智能速度检测系统,管理者可以用事先设定的方法强制约束汽车只能在规定的速度范围内行驶。它由微电脑控制仪和智能机械手两部分组成。可以通过微电脑控制仪来事先设定速度,比如在高架上,先设定最高速度为60公里。当汽车不超过60公里/小时,控制仪不启动机械手,司机驾车如常,当汽车速度接近60公里时,控制仪的微电脑立即启动机械手对汽车的油门踩杆准确地强制地提升45厘米。当你想继续加速时,由于油门位置被限制,你无法踩动,使汽车速度被控制汽车由于惯性速度保持在临界值。当惯性过去,汽车速度小于60公里临界值时,控制仪即指令机械手放松汽车油门,这时驾驶员又可以踩下油门加速,汽车又驾驶如初。设置控制仪的限制值,可以用程序设定也可以用ic卡设;可以只设定一个值,也可以根据不同的路况,有多个档位供设定;还可以接受信号切换设定(即接受道路速度无线信号切换或电子地图信号切换)。该产品控制车速灵敏精确,速度误差小于5控速时汽车行驶平稳,乘客不易察觉。汽车智能速度控制器的安装十分巧妙,除了机械手的钢丝位置固定在油门踩板上以外,机械手和控制仪可以隐蔽安装而且做到不打洞安装。该产品的开发成功,为建立自动化道路速度检测控制系统奠定了基础。目前,速度检测系统已经在汽车行业得到广泛应用,预计今后的智能控制系统会朝着更可靠、性能更稳定、更高端的方向发展。1.2 本课题的目的和意义在工业发展过程中,经常会遇到各种需要测量的速度的场合,例如在汽车、机床、传送机等设备运转和控制中,需要分时或连续的测量和显示其速度及瞬时速度情况。随着社会机械工业发展的趋势,对速度检测要求的精度越来越高,很多方面,奔跑速度的精确检测,关系到一系列系统的工业设计,所以这就需要设计一套奔跑速度检测系统。要测速,首先要解决信号采样的问题,采样效果的好坏关系到后续显示及控制,光电传感器由于其精度高、反应快、非接触性等优点,所以本课题设计中的中间环节就是光电式传感电路的设计;本课题主要采用嵌入式技术,由单片机和探测、信号采集、模数转换、数据存储、数据显示、与通信等环节组成的电路构成整个光电传感电路系统。1.3 本课题设计的主要内容本设计主要内容由以下三大部分组成:1、信号的采集。这部分主要是用光电传感器采集奔跑物体的信号,并将采集的信号传给单片机。2、单片机数据处理4。这部分主要是使用51系列单片机采用适当的算法来编程快速准确地对采集的数据进行相关运算并得出结果。此部分是本设计的重点和难点。3、led数字显示。这部分主要是对测得的结果通过4位led数码管显示给用户。本奔跑速检测系统有以下几个部分构成,如图1.1奔跑速度测量系统方框图所示。显示单片机信号调理电路光电传感器奔跑物体图1.1 速度检测系统方框图本系统的硬件主要由光电传感器、信号处理电路、单片机at89c51、led显示等组成。如图1.1,当奔跑物体通过光电传感器的时候,将会产生脉冲电信号,然后把信号送入三极管放大电路及cc40106芯片整形电路进行处理,将处理过的信号传给单片机,通过对单片机进行编程、运算,最后通过数码管显示其数值。2 奔跑速度检测系统原理本系统中,两对光电对射管布置在奔跑物体通过的路径上,当奔跑物体经过光电管q1,q2时,则挡住了光线,光电管q1,q2产生一个上升或下降沿,以光电管q1的上升沿或下降沿作为单片机计数器的启动脉冲,启动计时器开始计时,光电管q2的上升沿或下降沿作为单片机计数器的停止脉冲,计数器停止计时(本设计为高电平触发)。此时,得到计数器的计时值n。将值n传送处理中心,已知单片机的机器周期为t,可通过编程5计算出奔跑物体在定距离s内的平均速度v,为v=s/nt其中s为两个对射型光电管之间的距离。如图2.1所示奔跑物体光敏电阻单片机定时器启动定时器停止发光二极管q2发光二极管q1光敏电阻图2.1奔跑速度测量系统原理图3 系统方案提出和论证目前科研生产中采用的速度测量方法可以分为两类:直接测量法和间接测量法两大类。直接测量法是通过某种测量原理或效应直接获得速度量,如多普勒测速仪、空间滤波测速等。这种方法最大的优点是反应快、可测量瞬时速度,但设备成本高,且易受外围环境的影响,比如大气物理环境限制。间接测量法是测量目标的移动距离和时间,通过计算得到速度量,如光电测速、光栅测速、磁栅测速和图像测速等,用于测量奔跑物体的速度。本课题设计中采用间接测量法,并提出两种方案:方案一以at89c516为核心的计数电路,使用at89c51单片机,电路简单需要编写程序,可通过编程实现各种各样的算术算法和逻辑控制,而且体积小,硬件实现简单,安装方便,可实现数码显示和按键设定等多种功能。采用对射型光电传感器,将红外发光管与光电接收管相对安放,每当物体通过一次,红外光就被遮挡一次,光电接收管的输出电压就发生一次变化,这个变化的信号通过放大处理后形成计数脉冲,通过光电隔离耦合并行输入at89c51,通过软件控制计算并用led加以显示,便可实现对奔跑物体速度的测量。方案二以cd4518为核心的计数电路,采用cd4518组成8421同步十进制计数器,其计数是由光检测和接收电路检测到信号在传送到脉冲发生器cd4518,由d4518转化成电信号然后在分别传送到各个二十进制计数器bcd码,由bcd码七段译码器转换至数码管led,而电源部分是由220 v交流电经变压器t降压、桥式整流、电容滤波、7809稳压后为整个电路提供+5v稳压工作电压。方案选择:选用方案一是因为方案二在控制方式上难以实现复杂的控制过程,而且在其计数显示部分就需要几个芯片,还需要采用cd4543驱动led的配接电路,而方案一的基于at89c51单片机电路简单,其软硬件实现起来较为容易,而且可实现多种功能。4 系统的硬件设计4.1 光电传感器介绍4.1.1 光电传感器工作原理光电传感器的基本工作原理是光电效应,光电效应一般有外光电效应、光导效应、光生伏特效应。光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大是,电子会克服束缚脱离材料表面而进入外界空间,从而改变光电子材料的导电性,这种现象成为外光电效应根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv,由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律: (4.1)式中,m为电子质量,v为电子逸出的初速度,a微电子所做的功。由上式可知,要使光电子逸出阴极表面的必要条件是hva。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率限称为“红限”。相应的波长为式中,c为光速,a为逸出功。当受到光照射时,吸收电子能量,其电阻率降低的导电现象称为光导效应。它属于内光电效应。当光照在半导体上是,若电子的能量大与半导体禁带的能级宽度,则电子从价带跃迁到导带,形成电子,同时,价带留下相应的空穴。电子、空穴仍留在半导体内,并参与导电在外电场作用下形成的电流。除金属外,多数绝缘体和半导体都有光电效应,半导体尤为显著。4.1.2 光电传感器光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的,它的基本结构如下图,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。光电传感器一般由光源,光学通路和光电元件三部分组成。光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测7和控制中应用非常广泛。图4.1 光电传感器结构图光电传感器一般由三部分构成,它们分为:发送器、接收器和检测电路8,发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(led)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。光电传感器是一种依靠被测物与光电元件和光源之间的关系,来达到测量目的的,因此光电传感器的光源扮演着很重要的角色,光电传感器的电源要是一个恒光源,电源稳定性的设计至关重要,电源的稳定性直接影响到测量的准确性,常用光源有以下几种:1、发光二极管 是一种把电能转变成光能的半导体器件。广泛地用于计算机、仪器仪表和自动控制设备中。2、丝灯泡 这是一种最常用的光源,它具有丰富的红外线。3、激光 激光与普通光线相比具有能量高度集中,方向性好,频率单纯、相干性好等优点,是很理想的光源。4.1.3 光电传感器的类型及工作方式1、槽型光电传感器把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电。发光器能发出红外光或可见光,在无阻情况下光接收器能收到光。但当被检测物体从槽中通过时,光被遮挡,光电开关便动作。输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作。槽形开关的检测距离因为受整体结构的限制一般只有几厘米。2、对射型光电传感器若把发光器和收光器分离开,就可使检测距离加大。由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关。它的检测距离可达几米乃至几十米。使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号。3、反光板型光电开关把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号。4、扩散反射型光电开关它的检测头里也装有一个发光器和一个收光器,但前方没有反光板。正常情况下发光器发出的光收光器是找不到的。当检测物通过时挡住了光,并把光部分反射回来,收光器就收到光信号,输出一个开关信号。根据本设计的要求,本设计选择使用对射型光电传感器pm12。4.1.4 pm12光电传感器pm12光电传感器是采用光电元件作为检测元件的传感器。光电传感器一般由光源、光学通路和光电元件三部分组成。图4.2中光电器件为光敏电阻,光敏电阻是一种均质半导体光电器件,也称光电管,其是用光电导效应制成的。当没有光照时,光敏电阻的阻值很大;当它受到红外光照射时,其阻值急剧减小。因此,将光敏电阻接入电路中,就可使电路中的电流在光照前后有很大变化,根据光照变化量进而引起光敏电阻阻值变化,最终使输出电压发生变化,促使单片机作出相应的动作。图4.2 pm12光电传感器4.2 信号处理电路的设计光电对射管q1、q2分别接入at89c51的外部中断0和1引脚相连,q1和q2均为对射式光电管(无遮断时导通,遮断时截止)。int0和int1均设置下降沿触发。在int0中断处理程序中,启动at89c51内计数器t0开始计数,在int1中断处理程序中,计数器t0停止计数。计数值暂存于单片机寄存器内,为后续处理提供相应的数据。电路图如图4.3所示:图4.3 整形放大电路图如图所示,当奔跑物体通过传感器q1、q2时,传感器将其产生的电压信号传给下级的三极管,然后通过三极管放大,经过施密特触发器cc40106芯片进行整形,产生一个矩形方波脉冲,传给单片机计数。4.3 单片机at89c51介绍at89c51是一种带4k字节闪烁可编程可擦除只读存储器(fperomfalsh programmable and erasable read only memory)的低电压,高性能cmos8位微处理器,俗称单片机。该器件采用atmel高密度非易失存储器制造技术制造,与工业标准的mcs-51指令集和输出管脚相兼容。由于将多功能8位cpu和闪烁存储器组合在单个芯片中,atmel的at89c51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。图4.4是常用的一种单片机9,型号为at89c51,它将计算机的功能都集成到这个芯片内部去了,就这么一个小小的芯片就能构成一台小型的电脑,因此叫做单片机。图4.4 at89c51芯片它有40个管脚,分成两排,每一排各有20个脚,其中左下角标有箭头的为第1脚,然后按逆时针方向依次为第2脚、第3脚、第40脚。在40个管脚中,其中有32个脚可用于各种控制,比如控制小灯的亮与灭、控制电机的正转与反转、控制电梯的升与降等,这32个脚叫做单片机的“端口”,在单片机技术中,每个端口都有一个特定的名字,比如第一脚的那个端口叫做“p1.0”。at89c51单片机的功能:1、主要特性:(1) 与mcs-51 兼容 (2) 4k字节可编程闪烁存储器 (3) 寿命:1000写/擦循环(4) 数据保留时间:10年(5) 全静态工作:0hz-24hz(6) 三级程序存储器锁定(7) 128*8位内部ram(8) 32可编程i/o线(9) 两个16位定时器/计数器(10) 5个中断源 (11) 可编程串行通道(12) 低功耗的闲置和掉电模式(13) 片内振荡器和时钟电路 2、管脚说明10(图4.5):图4.5 at89c51管脚分布(1) vcc:供电电压,(2) gnd:接地。(3) p0口:p0口为一个8位漏级开路双向i/o口,每脚可吸收8ttl门电流。当p1口的管脚第一次写1时,被定义为高阻输入。p0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在fiash编程时,p0 口作为原码输入口,当fiash进行校验时,p0输出原码,此时p0外部必须被拉高。(4) p1口:p1口是一个内部提供上拉电阻的8位双向i/o口,p1口缓冲器能接收输出4ttl门电流。p1口管脚写入1后,被内部上拉为高,可用作输入,p1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在flash编程和校验时,p1口作为第八位地址接收。 (5) p2口:p2口为一个内部上拉电阻的8位双向i/o口,p2口缓冲器可接收,输出4个ttl门电流,当p2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,p2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。p2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,p2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,p2口输出其特殊功能寄存器的内容。p2口在flash编程和校验时接收高八位地址信号和控制信号。 (6) p3口:p3口管脚是8个带内部上拉电阻的双向i/o口,可接收输出4个ttl门电流。当p3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,p3口将输出电流(ill)这是由于上拉的缘故。 (7) p3口也可作为at89c51的一些特殊功能口。(8) p3口管脚备选功能:(9) p3.0 rxd(串行输入口)(10) p3.1 txd(串行输出口)(11) p3.2 /int0(外部中断0)(12) p3.3 /int1(外部中断1)(13) p3.4 t0(记时器0外部输入)(14) p3.5 t1(记时器1外部输入)(15) p3.6 /wr(外部数据存储器写选通)(16) p3.7 /rd(外部数据存储器读选通)(17) p3口同时为闪烁编程和编程校验接收一些控制信号。(18) rst:复位输入。当振荡器复位器件时,要保持rst脚两个机器周期的高电平时间。(19) ale/prog:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在flash编程期间,此引脚用于输入编程脉冲。在平时,ale端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ale脉冲。如想禁止ale的输出可在sfr8eh地址上置0。此时, ale只有在执行movx,movc指令是ale才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ale禁止,置位无效。(20) psen:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/psen有效。但在访问外部数据存储器时,这两次有效的/psen信号将不出现。(21) ea/vpp:当/ea保持低电平时,则在此期间外部程序存储器(0000h-ffffh),不管是否有内部程序存储器。注意加密方式1时,/ea将内部锁定为reset;当/ea端保持高电平时,此间内部程序存储器。在flash编程期间,此引脚也用于施加12v编程电源(vpp)。(22) xtal1:反向振荡放大器的输入及内部时钟工作电路的输入。(23) xtal2:来自反向振荡器的输出。3、振荡器特性:xtal1和xtal2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,xtal2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。4、芯片擦除:整个perom阵列和三个锁定位的电擦除可通过正确的控制信号组合,并保持ale管脚处于低电平10ms 来完成。在芯片擦操作中,代码阵列全被写“1”且在任何非空存储字节被重复编程以前,该操作必须被执行。此外,at89c51设有稳态逻辑,可以在低到零频率的条件下静态逻辑,支持两种软件可选的掉电模式。在闲置模式下,cpu停止工作。但ram,定时器,计数器,串口和中断系统仍在工作。在掉电模式下,保存ram的内容并且冻结振荡器,禁止所用其他芯片功能,直到下一个硬件复位为止。4.4 最小系统的设计4.4.1 复位电路mcs-51单片机复位电路是指单片机的初始化操作。单片机启运运行时,都需要先复位,其作用是使cpu和系统中其他部件处于一个确定的初始状态,并从这个状态开始工作。因而,复位是一个很重要的操作方式。但单片机本身是不能自动进行复位的,必须配合相应的外部电路才能实现。复位电路图如图4.6图4.6 复位电路1、复位功能: 复位电路的基本功能是:系统上电时提供复位信号,直至系统电源稳定后,撤销复位信号。为可靠起见,电源稳定后还要经一定的延时才撤销复位信号,以防电源开关或电源插头分-合过程中引起的抖动而影响复位。单片机的复位是由外部的复位电路来实现的。片内复位电路是复位引脚rst通过一个斯密特触发器与复位电路相连,斯密特触发器用来抑制噪声,它的输出在每个机器周期的s5p2,由复位电路采样一次。复位电路通常采用上电自动复位(如图4.7(a))和按钮复位(如图4.7 (b)两种方式。 (a) 上电复位电路 (b) 按键复位电路图图4.7 复位电路图2、单片机复位后的状态:单片机的复位操作使单片机进入初始化状态,其中包括使程序计数器pc0000h,这表明程序从0000h地址单元开始执行。单片机冷启动后,片内ram为随机值,运行中的复位操作不改变片内ram区中的内容,21个特殊功能寄存器复位后的状态为确定值,见表4.1。值得指出的是,记住一些特殊功能寄存器复位后的主要状态,对于了解单片机的初态,减少应用程序中的初始化部分是十分必要的。说明:表4.1中符号*为随机状态:表4.1 寄存器复位后状态表特殊功能寄存器初始状态特殊功能寄存器初始状态abpsw00h00h00htmodtconth000h00h00hspdpldphp0p3ipie07h00h00hffh*00000b0*00000btl0th1tl1sbufsconpcon00h00h00h不定00h0*bpsw00h,表明选寄存器0组为工作寄存器组; sp07h,表明堆栈指针指向片内ram 07h字节单元,根据堆栈操作的先加后压法则,第一个被压入的内容写入到08h单元中;po-p3ffh,表明已向各端口线写入1,此时,各端口既可用于输入又可用于输出。ip00000b,表明各个中断源处于低优先级;ie000000b,表明各个中断均被关断;系统复位是任何微机系统执行的第一步,使整个控制芯片回到默认的硬件状态下。51单片机的复位是由reset引脚来控制的,此引脚与高电平相接超过24个振荡周期后,51单片机即进入芯片内部复位状态,而且一直在此状态下等待,直到reset引脚转为低电平后,才检查ea引脚是高电平或低电平,若为高电平则执行芯片内部的程序代码,若为低电平便会执行外部程序。51单片机在系统复位时,将其内部的一些重要寄存器设置为特定的值,至于内部ram内部的数据则不变。4.4.2 晶振电路晶振(图4.8)是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。at89c51单片机内部有一个用于构成振荡器的高增益反相放大器。引脚xtal1和xtal2分别是此放大器的输入端和输出端。这个放大器与作为反馈元件的片外晶体谐振器一起构成一个自激振荡器。外接晶体谐振器以及电容c1和c2构成并联谐振电路,接在放大器的反馈回路中。对外接电容的值虽然没有严格的要求,但电容的大小会影响震荡器频率的高低、震荡器的稳定性、起振的快速性和温度的稳定性。因此,此系统电路的晶体振荡器的值为12mhz,电容应尽可能的选择陶瓷电容,电容值约为30f。在焊接刷电路板时,晶体振荡器和电容应尽可能安装得与单片机芯片靠近,以减少寄生电容,更好地保证震荡器稳定和可靠地工作。晶体振荡电路如图4.8:晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。图4.8 晶振电路4.5 led显示部分电路设计4.5.1 led基本结构led是发光二极管显示器的缩写。led由于结构简单、价格便宜、与单片机接口方便等优点而得到广泛应用。led显示器是由若干个发光二极管组成显示字段的显示器件。在单片机中使用最多的是七段数码显示器。led七段数码显示器由8个发光二极管组成显示字段,其中7个长条形的发光二极管排列成“日”字形,另一个圆点形的发光二极管在显示器的右下角作为显示小数点用,其通过不同的组合可用来显示各种数字。led引脚排列如下图4.9所示。图4.9 led引脚排列4.5.2 led显示器的选择在应用系统中,设计要求不同,使用的led显示器的位数也不同,因此就生产了位数,尺寸,型号不同的led显示器供选择,在本设计中,选择4位一体的数码型led显示器,简称“4-led”。本系统中前一位显示电压的整数位,即个位,后两位显示速度的小数位。4-led显示器引脚如图4.10所示,是一个共阴极接法的4位led数码显示管,其中a,b,c,e,f,g为4位led各段的公共输出端,1、2、3、4分别是每一位的位数选端,dp是小数点引出端,4位一体led数码显示管的内部结构是由4个单独的led组成,每个led的段输出引脚在内部都并联后,引出到器件的外部。图4.10 4位led引脚对于这种结构的led显示器,它的体积和结构都符合设计要求,由于4位led阴极的各段已经在内部连接在一起,所以必须使用动态扫描方式(将所有数码管的段选线并联在一起,用一个i/o接口控制)显示。4.5.3 led译码方式译码方式是指由显示字符转换得到对应的字段码的方式,对于led数码管显示器,通常的译码方式有硬件译码和软件译码方式两种。硬件译码是指利用专门的硬件电路来实现显示字符码的转换。软件译码就是编写软件译码程序,通过译码程序来得到要显示的字符的字段码,译码程序通常为查表程序。本设计系统中为了简化硬件线路设计,led译码采用软件编程来实现。由于本设计采用的是共阴极led,其对应的字符和字段码如下表4.2所示。表4.2 共阴极字段码表显示字符共阴极字段码03fh106h25bh34fh466h56dh67dh707h87fh96fh4.5.4 led显示器与单片机接口设计由于单片机的并行口不能直接驱动led显示器,所以,在一般情况下,必须采用专用的驱动电路芯片,使之产生足够大的电流,显示器才能正常工作。如果驱动电路能力差,即负载能力不够时,显示器亮度就低,而且驱动电路长期在超负荷下运行容易损坏,因此,led显示器的驱动电路设计是一个非常重要的问题。为了简化奔跑速度检测电路设计,在led驱动电路的设计上,采用三极管对输入位选端的电压进行放大,加大位选端口k1/k2/k3/k4的驱动能力,使得led能按正常的亮度显示出数字。电路图如图4.11所示。图4.11 led与单片机接口间的设计5 系统软件设计硬件电路完成以后,进行系统软件设计。首先要分析系统对软件的要求,然后进行软件的总体的设计,包括程序的总体设计和对程序的模块化设计。按整体功能分为多个不同的模块,单独设计、编程、调试,然后将各个模块装配联调,组成完整的软件。根据设计的要求,单片机的任务是:内部进行计数,在计算出速度后显示。软件编程用c语言完成的,需要能掌握c语言,还要熟练at89c51单片机。从程序流程图、编写程序、编译,到最后的调试,是很复杂的。下面作简单介绍:系统软件主程序的功能是完成系统的初始化、显示程序。5.1 主程序初始化1、定时器的初始化at89c51有两个定时器/计数器t0和t1,每个定时器/计数器均可设置成为16位,也可以设置成为13位进行定时或计数。计数器的功能是对t0或t1外来脉冲的进行计数,外部输入脉冲负跳变时,计数器进行加1。定时功能是通过计数器的计数来实现的,每个机器周期产生1个计数脉冲,即每个机器周期计数器加1,因此定时时间等于计数个数乘以机器周期。定时器工作时,每接收到1个计数脉冲(或机器周期)则在设定的初值基础上自动加1,当所有位都位1时,再加1就会产生溢出,将向cpu提出定时器溢出中断身请。当定时器采用不同的工作方式和设置不同的初值时,产生溢出中断的定时值和计数值将不同,从而可以适应不同的定时或计数控制。定时器有4种工作方式:方式0、方式2、方式2和方式3,在此对工作方式不做具体介绍。工作方式寄存器tmod12的设定:gatec/tm1-m0gatec/tm1m0tmod各位的含义如下:gate:门控位,用于控制定时/计数器的启动是否受外部中断请求信号的影响。c/t:定时或计数方式选择位,当c/t=1时工作于计数方式;当c/t=0时工作于定时方式。m1、m0为工作方式选择位,用于对t0的四种工作方式,t1的三种工作方式进行选择,选择情况如下表5.1:m1m0=00为方式0;m1m0=01为方式1;表5.1 m1、m0为工作方式选择位mom1工作方式方式说明00110101012313位定时/计数器16位定时/计数器8位自动重置定时/计数器两个8位定时/计数器(只有t0有)2、中断允许控制mcs-51单片机中没有专门的开中断和关中断指令,对各个中断源的允许和屏蔽是由内部的中断允许寄存器ie的各位来控制的。中断允许寄存器ie的字节地址为a8h,可以进行位寻址。表5.2 中断位寻址表ied7d6d5d4d3d2d1d0(a8h)eaet2eset1ex1et0ex0ea:中断允许总控位。ea=0,屏蔽所有的中断请求;ea=1,开放中断。et2:定时器/计数器t2的溢出中断允许位es:串行口中断允许位。et1:定时器/计数器t1的溢出中断允许位。ex1:外部中断 int1的中断允许位。et0:定时器/计数器t0的溢出中断允许位。ex0:外部中断 int0的中断允许位。5.2 主程序流程图程序流程图1、主程序流程图5.1图5.1流程图2、显示子程序流程图5.2图5.2显示子程序流程图总结采用单片机与光电传感器技术来实现测速的测量,可以快速测量显示速度,可以提高速度测量的精确度,本设计简单易于用于工业等领域,且成本低廉,适合大规模生产,技术性要求较低。对于单片机与光电传感器领域,技术研究非常完善,技术相对成熟,问题解决能力要求不高,对原有的各种性能特性无明显的要求,能够与其他设备相互整合,因而具有较宽的应用范围和广阔的应用的前景。基于单片机的速度测量系统,具有硬件电路简单,程序简单和运算速度快,测速范围广,抗干扰性能好的特点。本课题由于能力的限制,在以下几个问题上面有待进一步改进:1、在设计的信号处理电路中经过滤波,能够进一步减少误差,是测速精度得到提高。2、多套光电传感器的运用可以进一步提高测速精度以及准确度。3、本课题没有考虑报警环节设计。4、这个课题没有进行仿真,如果进行仿真,本设计会更完美。致谢经过几个月的忙碌,本次毕业设计已经接近尾声,通过这次学校组织的毕业设计,端正了自己学习的态度,锻炼了自己独立动手的能力,在此,我要感谢每一个帮助过我的人。首先,我要感谢的是我的导师杨全玖老师。杨老师平日里工作繁多,但在我做毕业设计的每个阶段,都给予我悉心的指导和帮助。每次我都是通过邮件以及电话详细询问论文设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论