会员注册 | 登录 | 微信快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

毕业论文--浅谈极坐标及极坐标方程的应用.doc毕业论文--浅谈极坐标及极坐标方程的应用.doc -- 9 元

宽屏显示 收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

本科毕业论文(设计)1摘要极坐标法是一种重要的解题方法,虽然高中数学教材已经删去极坐标的内容,但这一思想和方法对解决平面几何问题和高等数学问题都有很重要的作用,有必要加以深入研究。本文首先对极坐标的基础知识进行阐述,给出了极坐标的相关概念,以及求曲线方程的方法与步骤,并求出了三种圆锥曲线统一的极坐标方程,然后讨论了极坐标在平面解析几何中的应用,最后探讨了极坐标在解决高等数学问题的应用。通过对极坐标在数学各方面的应用的探讨,我们能够发现极坐标有很大的优越性。通过探讨研究,使我们对极坐标这一思想和方法有更深的了解,并使学生对高中平面解析几何内容有完整的把握,有更深层次的掌握。同时,这种对知识的深入掌握可以使教育者更好的完成对其的教学任务。关键词极坐标应用优越性本科毕业论文(设计)2AbstractThemethodofusingthepolarcoordinatesisanusuallyusedmethod.Althoughthecontentofthemethodhasbeendeletedintheprocessofeditingthemathematicaltextbookformiddleschoolstudents,thismethodisveryimportanttosolvetheproblemofplanegeometryandadvancedmathematics.Itisnecessarytostudythismethodfurther.Firstthispaperillustratesthebasicknowledgeofpolarcoordinates.Thewritergivestherelativeconceptsofpolarcoordinatesandthemethodandstepsofsolvingcurveequation,andworkoutthepolarcoordinatesequationofthreetapercurves.Seconditdiscussestheapplicationofthemethodinplaneanalyticgeometry.Andthenitprobesintotheapplicationofthemethodinsolvingtheadvancedmathematicalproblem.Byexploringtheapplicationofpolarcoordinatesinmanymathematicalaspects,wemaynoticetheadvantagesofpolarcoordinatesanditscertainapplicablerange.Bystudying,itmakesusunderstandtheconceptsandthethinkingfurther.Italsomakesthestudentsgraspthecontentofplaneanalyticgeometrywhollyanddeeperinmiddleschool.Also,thedeepunderstandingoftheknowledgemakestheteacherfinishtheeducationaltasksbetter.Keywordspolarcoordinatesapplicationadvantages本科毕业论文(设计)3前言第一个用极坐标来确定平面上点的位置的是牛顿。他的流数法与无穷级数,大约于1671年写成,出版于1736年。此书包括解析几何的许多应用,例如按方程描出曲线,书中创见之一,是引进新的坐标系。瑞士数学家J.贝努力利于1691年在教师学报上发表了一篇基本上是关于极坐标的文章,所以通常认为J.贝努利是极坐标的发现者。J.贝努利的学生J.赫尔曼在1729年不仅正式宣布了极坐标的普遍可用,而且自由地应用极坐标去研究曲线。在平面内建立直角坐标系,是人们公认的最容易接受并且被经常采用的方法,但它并不是确定点的位置的唯一方法。有些复杂的曲线用直角坐标表示,形式极其复杂,但用极坐标表示,就变得十分简单且便于处理,在此基础上解决平面解析几何问题也变的极其简单。通过探究极坐标在平面解析几何中的广泛应用,使我们能够清楚的认识到,用极坐标来解决某些平面解析几何问题和某些高等数学问题比用直角坐标具有很大的优越性,故本文对其进行了初步探讨。国内外研究动态,不仅在数学理论方面,很多学者对极坐标以及极坐标方程做了深入探究,而且在如物理、电子、军事等领域,很多学者对极坐标也有较深的研究。由此看来,极坐标已应用到各个领域。本科毕业论文(设计)4第一章预备知识1.1极坐标系的建立在平面内取一个定点O,叫作极点,引一条射线OX,叫做极轴,再选定一个长度单位和角度的正方向通常取逆时针方向。对于平面内任意一点M,用表示线段OM的长度,表示从OX到OM的角度,叫点M的极径,叫点M的极角,有序数对,就叫点M的极坐标。这样建立的坐标系叫极坐标系,记作M,.若点M在极点,则其极坐标为0,可以取任意值。xOPMxPOM图11图12如图12,此时点M的极坐标可以有两种表示方法1>0,M,2>0,M,同理,,与,也是同一个点的坐标。又由于一个角加2nnZ后都是和原角终边相同的角,所以一个点的极坐标不唯一。但若限定0,02或,那么除极点外,平面内的点和极坐标就可以一一对应了。1.2曲线的极坐标方程在极坐标系中,曲线可以用含有,这两个变数的方程0,来表示,这种方程叫曲线的极坐标方程。求曲线的极坐标方程的方法与步骤1°建立适当的极坐标系,并设动点M的坐标为,2°写出适合条件的点M的集合本科毕业论文(设计)53°0列方程,4°化简所得方程5°证明得到的方程就是所求曲线的方程。三种圆锥曲线统一的极坐标方程yxPBFOKAM图13过点F作准线L的垂线,垂足为K,以焦点F为极点,FK的反向延长线FX为极轴,建立极坐标系。设M,是曲线上任意一点,连结MF,作MA⊥L,MB⊥FX,垂足分别为AB,.那么曲线就是集合MFpMeMA.设焦点F到准线L的距离FKPMF,由,MABKPCOS得cosep即1cosepe这就是椭圆、双曲线、抛物线的统一的极坐标方程。其中当01e时,方程表示椭圆,定点F是它的左焦点,定直线L是它的左准线。1e时,方程表示开口向右的抛物线。1e时,方程只表示双曲线右支,定点F是它的右焦点,定直线L是它的右准线。若允许0,方程就表示整个双曲线。1.3极坐标和直角坐标的互化把直角坐标系的原点作为极点,X轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,其直角坐标x,y,极坐标是,,从点M作MN⊥OX,由三角函数定义,得cossinxy,.本科毕业论文(设计)6yxyxNOM图14进一步有222,0yxytgxx注在一般情况下,由tg确定角时,可根据点M所在的象限取最小角。本科毕业论文(设计)7第二章极坐标在平面解析几何中的应用2.1极坐标法求到定点的线段长度解析几何中涉及到某定点的线段长度时,可以考虑利用极坐标法求解。但是绝大多数解析几何问题中题设条件是以直角坐标方程形式给出的,在求解过程中运算繁琐复杂,将此类问题转化为用极坐标方程求解,十分简洁,收到良好的效果。巧设极点,建立极坐标系是解决问题的关键。2.1.1以定点为极点如果题设条件与结论中,涉及到过某定点M的线段长度问题,应该取该点为极点,先将直角坐标原点移动到M点,施行平移公式、直角坐标与极坐标互化公式,化普通方程为极坐标方程求解。例1设等腰OAB的顶角为2,高为h,在OAB内有一动点p,到三边OAOB、OC的距离分别为PDPFPE、、,并且满足关系2PDPFPE,求P点的轨迹。xFEDPBAO图21解如图21所示,以O为极点,∠AOB的平分线为极轴,建立极坐标系,设P点极坐标为p,,则sin,sin,PDPFcosPEh由2PDPFPE得22sinsincosh化简得22222cos0coscoshh本科毕业论文(设计)8化成直角坐标方程为22222sincoscoshhxy这是以2cosh,0为圆心,以2sincosh为半径的圆,所求的轨迹是该圆在等腰OAB内部的部分。2.1.2以原点为极点如果题设条件或结论中涉及到直角坐标系原点的线段长度时,应选取原点为极点,应用互化公式,将直角坐标方程转化极坐标方程求解。例2已知椭圆2212416xy,直线L1128xy,P是L上一点,射线OP交椭圆于R,又点Q在OP上,且满足2OQOPOR,当点P在L上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线。解如图22所示,以O为极点,OX为极轴,建立极坐标系。则由互化公式知椭圆的极坐标方程为2222cos3sin481直线L的极坐标方程为2cos3sin24212QRP设,、,、,,则由1式知2122482cos3sin由2式知2242cos3sin又221,有22244802cos3sin2cos3sin22222cos3sin4cos6sin所以2223440xyxy本科毕业论文(设计)9即22111,05523xyxy不同时为点Q的轨迹是以1,1为中心,长轴、短轴分别为25103,且长轴平行与X轴的椭圆,去掉坐标原点。OPRQLyx图222.1.3以焦点为极点凡涉及圆锥曲线的焦半径或焦点弦长度的问题,应选取焦点为极点椭圆左焦点,双曲线右焦点,应用圆锥曲线统一的极坐标方程求解。例3设O为抛物线的顶点,F为焦点,且PQ为过F的弦。已知OFaPQb,OPQ求的面积。xQOFP图23解如图23所示,以F为极点,FO的反向延长线FX为极轴,建立极坐标系。则抛物线的极坐标方程为21cosa2222241cos1cossinaaabPQPFQF于是24sinab
编号:201312012350278934    大小:1.15MB    格式:DOC    上传时间:2013-12-01
  【编辑】
9
关 键 词:
专业文献 学术论文 精品文档 毕业论文
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

4.0
 
(2人评价)
浏览:57次
21ask上传于2013-12-01

官方联系方式

客服手机:17625900360   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

专业文献   学术论文   精品文档   毕业论文  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5