硕士研究生分子生物学复习题答案.docx_第1页
硕士研究生分子生物学复习题答案.docx_第2页
硕士研究生分子生物学复习题答案.docx_第3页
硕士研究生分子生物学复习题答案.docx_第4页
硕士研究生分子生物学复习题答案.docx_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

硕士研究生分子生物学复习(JUJU)一、名词解释1. 基因(gene):是指核酸分子中贮存遗传信息的遗传单位,是指贮存有功能的蛋白质多肽链或RNA序列信息及表达这些信息所必需的全部核苷酸序列。2. 基因组(genome):是指细胞或生物体中,一套完整单倍体的遗传物质的总和。基因组的结构主要指不同的基因功能区域在核酸分子中的分布和排列情况,基因组的功能是储存和表达遗传信息。3. 基因家族(gene family):是指核苷酸序列或编码产物的结构具有一定程度同源性的一组基因。同一个家族的基因成员是由同一祖先基因进化而来。4. 假基因(pseudogene):在多基因家族中,某些成员并不能表达出有功能的产物,这些基因称为假基因,用表示。假基因与有功能的基因同源,原来也可能是有功能的基因,由于缺失、倒位或点突变等原因失去活性,成为无功能的基因,它们或者不能转录,或者转录后生成无功能的异常多肽。5. 质粒(plasmid):是存在于细菌细胞质中的一类独立于染色体的遗传成分,它是由环形双链DNA组成的复制子。质粒DNA分子可以持续稳定的处于染色体外的游离状态,但在一定条件下又会可逆的整合到宿主染色体上,随染色体的复制而复制,并通过细胞分裂传递到后代。6. 基因超家族(gene superfamily):是指一组由多基因家族及单基因组成的更大的基因家族。它们的结构有程度不等的同源性,可能是由于基因扩增后又经过结构上的轻微改变,因此它们可能都起源于相同的祖先基因。但是它们的功能并不一定相同,这一点正是与多基因家族的差别。这些基因在进化上也有亲缘关系,但亲缘关系较远。如免疫球蛋白超家族。7. 卫星DNA(satellite DNA):为非编码区串联重复序列。通常存在于内含子和间隔DNA内。重复次数从数次至数百次,甚至几十万次,串联重复单位从最短的2bp起,长短不等。这类重复顺序组成卫星DNA的基础。可分为三类:大小微卫星DNA。8. 基因多态性:是指由于等位基因间在特定位点上DNA序列存在差异造成的,一般发生在基因序列中不编码蛋白质的区域和没有重要调节功能的区域。9. 操纵子(operator):是阻遏蛋白识别与结合的一小段DNA序列,转录过程存在阻遏调控机制的基因中均含有这样的序列。操纵子紧接在启动子下游,通常与启动子有部分重叠。10. 顺式作用元件(cis-acting elements):是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的DNA序列。原核生物中主要是启动子、阻遏蛋白结合位点、正调控蛋白结合位点、增强子等。真核生物中包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。11. 反式作用因子(trans-acting elements):在真核生物中,基因特异性转录因子称为反式作用因子,这些因子通常是通过与增强子或上游启动元件结合而发挥作用。反式作用因子通过与通用转录因子及RNA聚合酶相互作用而刺激转录,这些相互作用促进前起始复合物的形成。12. 增强子(enhancer):是一种较短的DNA序列,能够被反式作用因子识别与结合。反式作用因子与增强子元件结合后能够调控(通常为增强)临近基因的转录。增强子序列通常是数个形成一簇,位于转录起始点上游-100-300bp处,但在基因之外或某些内含子中也有增强子序列。13. 启动子(promoter):是RNA聚合酶特异性识别和结合的DNA序列。启动子具有方向性,一般位于结构基因转录起始点的上游,启动子本身并不被转录。(也有一些真核生物启动子位于转录起始点下游,且可以被转录)14. 载体(vector):携带外源DNA进入宿主细胞,并在宿主细胞中进行无性繁殖或表达的小分子DNA。这种DNA进入受体细胞后,可自主复制,或插入到基因组中,随受体细胞的基因组一起复制。载体上还常带有特定的药物抗性基因,便于筛选。(按功能可分为克隆载体和表达载体,按来源可分为质粒、噬菌体、噬菌粒、粘粒、病毒和人工染色体载体等。)15. 基因工程(gene engineering):将基因进行克隆,并利用克隆的基因表达、制备特定的蛋白或多肽产物,或定向改造细胞乃至生物个体的特性所用的方法及相关的工作统称为基因工程。 是在分子水平上,用人工方法提取或制备DNA, 在体外切割、拼接和重新组合,然后通过载体把重组的DNA分子导入受体细胞,使外源DNA在受体细胞中进行复制与表达,生产出人们所需要的产物,或定向创造生物新性状,并使之稳定地传给下一代。16. PCR(polymerase chain reaction):聚合酶链式反应。是在DNA聚合酶、模版DNA、引物和4种dNTP存在的条件下进行的体外酶促DNA合成反应,是在体外特异性扩增位于两段已知序列之间的DNA区段的一种方法。其原理是依据细胞中DNA半保留复制机理,DNA在不同温度下变性、复性的特性,人为控制温度(高温变性、低温退火、中温延伸)循环多次后使目的基因得到扩增。17. RNAi(RNA interference):RNA干涉,是指外源性的dsRNA所致的细胞内有效的和特异性的基因封闭。其作用机制是双链RNA被特异的核酸酶降解,产生干扰小RNA(siRNA),这些siRNA与同源的靶RNA互补结合,特异性酶降解靶RNA,从而抑制、下调基因表达。已经发展成为基因治疗、基因结构功能研究的快速而有效的方法。是指在生物体细胞内,dsRNA引起同源mRNA的特异性降解,因而抑制相应基因表达的过程。是一种转录后水平的基因沉默,在生物体内普遍存在。指在生物体细胞内,外源性dsRNA(酶切产生siRNA)引起同源mRNA的特异性降解,因而抑制相应基因表达的过程。 是一种转录后水平的基因沉默,在生物体内普遍存在(外源性dsRNA被一种叫DICER的dsRNA内切酶剪切产生siRNA,其可识别靶mRNA分子并使其被相应的核糖核酸酶切割成片段,从而抑制正常基因的表达),正常时生物体内不会有RNAi现象,只有在外源性RNA导入的情况下会发生。18. 分子杂交(nucleic acid hybridization):是指具有互补序列的两条核酸单链在一定条件下按碱基酸对原则形成双链的过程。19. 基因诊断(gene diagnosis):是以DNA和RNA作为诊断材料,通过检查基因的存在、缺陷或异常表达,对人体状态和疾病作出诊断的方法和过程。其基本原理是检测DNA或RNA的结构变化与否,量的多少及表达功能是否正常,以确定被检查者是否存在基因水平的异常变化,以此作为疾病诊断的依据。20. 基因治疗(gene therapy):是应用基因或基因产物,治疗疾病的一种方法。狭义的说,基因治疗是把外界的正常或治疗基因,通过载体转移到人体的靶细胞,进行基因修饰和表达,改善疾病的一种治疗手段。21. miRNA(microRNA):是真核生物中发现的一类内源性的具有调控功能的非编码RNA,其大小长约2025nt。成熟的miRNA是由较长的初级转录产物经过一系列核酸酶的剪切加工而产生的,随后组装进RNA诱导的沉默复合体,通过碱基互补配对的方式识别靶mRNA,并根据互补程度的不同指导沉默复合体降解靶mRNA或阻遏靶mRNA的翻译。长度约20-25个碱基对的非编码单链RNA,通过与 mRNA 3UTR互补的机制结合到mRNA上,抑制其转录或直接导致其降解,从而抑制基因表达。有高等生物基因组编码,在物种进化中相当保守。miRNAs的表达具组织特异性和时序性,在细胞生长和发育过程的调节中起多种作用22. 反义RNA(anti-sense RNA):其碱基序列正好与mRNA互补,从而可与mRNA配对结合形成双链,抑制mRNA作为模板进行翻译。23. 转染(transfection):指真核细胞主动摄取或被动导入外源DNA片段而获得新的表型的过程。24. 转化(transformation):是指将质粒或其他外源DNA导入处于感受态的宿主细胞,并使之获得新的表型的过程。转化现象在自然界普遍存在,是常见的基因转移方式之一。25. 基因表达:是指生物基因组中结构基因所携带的遗传信息经过转录、翻译等一系列过程,合成特定的蛋白质,进而发挥其特定的生物学功能和效应的全过程。但并非所有基因表达过程都产生蛋白质,rRNA、tRNA编码基因转录生成RNA的过程也属于基因表达。26. 限制性核酸内切酶(restriction endonuclease):是一类能识别双链DNA分子中特定核苷酸序列,并在识别序列内或附近特异切割双链DNA的核酸内切酶。27.基因组学(genomics):指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录图谱),核酸序列分析,基因定位和基因功能分析的一门科学。包括结构基因组学、功能基因组学、比较基因组学。28. 蛋白质组学(proteomics):是对不同时间和空间发挥功能的特定蛋白群体的研究,它是指从整体角度分析细胞内动态变化的蛋白质组成分、表达水平与修饰状态,了解蛋白质之间的相互作用与联系,揭示蛋白质功能与细胞生命活动规律的一个新的研究领域。蛋白质组学的研究技术体系包括:样品制备,双向聚丙烯酰胺凝胶电泳,蛋白质的染色,凝胶图像分析,蛋白质分析,蛋白质组数据库等。是指对在一定时间内或某一特定环境条件下,细胞、组织或有机体内所表达的所有蛋白质(即蛋白质组)进行系统的、总的研究的一门学科。(旨在阐明生物体全部蛋白质的表达模式和功能模式,内容包括鉴定蛋白质表达、存在方式、结构、功能的互相作用方式等,它不同于传统的蛋白质学科,是在生物体或其细胞的整体蛋白质水平上进行的,从一个机体或一个细胞的蛋白质整体活动来揭示生命规律。包括表达蛋白质组学和细胞图形(功能)蛋白质组学。)29.顺反子(cistron):编码单条多肽链的一个遗传功能单位,即转录单位。有单顺反子和多顺反子。即是由结构基因转录出的、并作为模板与核蛋白体结合、指导蛋白质合成的一类RNA分子。在真核细胞中一种mRNA分子只能翻译出一种蛋白质,为单顺反子。在原核细胞中一种mRNA分子可翻译出多种蛋白质,为多顺反子。二、问答题1. 真核生物基因组结构特点。 P351)结构基因: 真核生物的结构基因是不连续的,编码氨基酸的序列被非编码序列打断,因而被成为断裂基因。编码序列之间的序列称为内含子,被隔开的编码序列称为外显子。2)顺式调控元件: 是指那些与结构基因表达调控相关、能够被基因调控蛋白特异性识别和结合的DNA序列。包括启动子、上游启动子元件、增强子、加尾信号和一些反应元件等。3)基因家族:是指核苷酸序列或编码产物的结构具有一定程度同源性的一组基因。同一个家族的基因成员是由同一祖先基因进化而来。根据基因家族同源性程度的不同可以分为以下几型:基因序列相同;基因序列高度同源;基因序列不同,编码产物具有同源功能区;基因序列不用,编码产物具有小段保守基序;基因超家族。4)假基因:在多基因家族中,某些成员并不能表达出有功能的产物,这些基因称为假基因,用表示。假基因与有功能的基因同源,原来也可能是有功能的基因,由于缺失、倒位或点突变等原因失去活性,成为无功能的基因,它们或者不能转录,或者转录后生成无功能的异常多肽。5)重复序列: 真核基因组存在大量重复序列,除了编码rRNA、tRNA、组蛋白及免疫球蛋白的结构基因外,大部分重复序列是非编码序列。根据出现频率不同可分为:高度重复序列、中度重复序列、单拷贝序列。6)真核生物基因组中的转座子:是一些可以移动的遗传因素。7)端粒: 真核生物基因组染色体DNA为线性分子,其末端存在一种特殊的结构形式,称为端粒。该结构是一段DNA序列和蛋白质形成的复合体,只存在于真核细胞染色体末端。其在染色体的定位、复制、末端保护以及控制细胞寿命等方面起重要作用。8)非编码序列:占基因组90%以上,编码序列小于DNA总量的5%。9)为单基因结构,转录产物为单顺反子。10)有多复制起点,每个复制起点大小不一。2. 真核生物和原核生物基因组结构的异同点。 P35真核基因组远远大于原核生物的基因组。真核基因具有许多复制起点,每个复制子大小不一。原核基因只有一个复制起点。每一种真核生物都有一定的染色体数目,除了配子(精子和卵子)为单倍体外,体细胞一般为双倍体,即含两份同源的基因组,而原核基因组则是单拷贝的。真核基因都是由一个结构基因与相关的调控区组成,转录产物为单顺反子(monocistron),即一分子mRNA只能翻译成一种蛋白质。原核基因具有操纵子结构,即由几个功能相关的结构基因串联在一起,连同它们的调控序列组成一个转录单位。转录产物为多顺反子。真核生物基因组中含有大量重复顺序,而原核生物基因组除rRNA、tRNA基因外,重复顺序不多。真核生物基因组内非编码的顺序占90%以上。基因中非编码顺序所占的比例是真核生物与细菌、病毒的重要区别,且在一定程度上也是生物进化的标尺。真核基因是断裂基因,即编码序列被非编码序列分隔开来,基因与基因间的非编码序列为间隔DNA,基因内非编码序列为内含子,被内含子隔开的编码序列则为外显子。而原核基因是连续的。功能相关的基因构成各种基因家族,它们可串联在一起,亦可相距很远,但即使串联在一起的成簇的基因也是分别转录的。真核生物基因组中也存在一些可以移动的遗传因素,这些DNA顺序并无明显生物学功能,似乎为自己的目的而组织,故有自私DNA之称,其移动多被RNA介导(如哺乳动物及人类基因组中的逆转座子),也有被DNA介导的(如果蝇及谷类中的DNA转座子)。1、原核结构基因无重叠现象,即同一部分DNA序列不编码两种蛋白质2、原核具有编码同工酶的基因3、原核DNA分子中有多种功能的识别区域,如复制起始区与终止区、转录启动区与终止区等,这些区域往往具有特殊序列,并含有反向重复序列。3. 人类基因组的组织结构特点。P371)人类基因组的重复序列:(按组织结构和分布特点分类)反向重复序列:是指两个顺序相同的拷贝在DNA链上呈反向排列。人类基因组中约含5%的反向重复序列,散布于整个基因组中,常见于基因组的调控区内,可能与复制转录的调控有关。串联重复序列:特点是具有一个固定的重复单位,该重复单位头尾相连形成重复顺序片段,约占人类基因组10%。A. 编码区串联重复序列:如组蛋白基因、5sRNA基因等,其意义在于快速大量合成相应基因的mRNA。B. 非编码区串联重复序列:其通常存在于间隔DNA和内含子内,是组成卫星DNA的基础。散在重复序列:除串联重复和反向重复序列之外的所有重复序列,不论重复次数多少,都可归在散在重复序列。根据重复序列的长度可分为短散在核元件和长散在核元件。2)人类基因组中的DNA多态性: DNA多态性是指发生在DNA水平的多态性。在人类漫长的进化过程中,由于染色体结构的改变、DNA突变、重组、交换以及转座子的插入等,使得除了单卵双胞得个体外,没有两个个体的DNA组成是完全相同的。(人类基因组多态性都是按孟德尔规律遗传的,具有体细胞稳定性和种系稳定性,因此可用它们作为染色体上疾病基因座位的遗传标记。)基因多态性:是由于等位基因间在特定位点上DNA序列存在差异造成的。限制性片段长度多态性:是指突变、重排、单个核苷酸的插入或缺失可使DNA顺序发生改变,其中有些可能造成限制酶切位点的增加、缺失或易位,致使DNA分子的限制酶切位点数目、位置发生改变。用限制酶切割不用个体基因组时,所产生的限制性片段的数目和每个片段的长度不同。串联重复序列多态性:是以相同的核心序列按首尾相连的形式串联排列在一起形成一段特殊的序列的重复次数有较大变化。为DNA序列长度多态性。主要发生在小卫星和微卫星DNA。单核甘酸多态性:是指基因组内特定核苷酸位置上存在不同的碱基,其中最少的一种在群体中的频率不低于1%。4. 原核生物基因表达调控机制。P78原核生物基因的转录和翻译偶联,mRNA降解快、半衰期短。原核生物基因表达调控主要在转录水平,其次是翻译水平。有两种方式:起始调控(启动子调控)和终止调控(衰减子调控),转录是通过负调控因子和正调控因子进行复合调控的。以大肠杆菌(E.coli)为例介绍。1) 转录起始调控的主要模式:因子控制特定基因的表达:不同的因子可以竞争结合RNA聚合酶,RNA聚合酶的核心酶与不同因子组成的全酶识别不同基因的启动子。乳糖操纵子的转录调控: 在大肠杆菌的许多操纵子中,基因的转录不是由单一因子调控的,而是通过负调控因子和正调控因子进行复合调控的。 细菌通常优先以葡萄糖作为能源,葡萄糖代谢产物能抑制细胞腺苷酸环化酶和激活磷酸二酯酶的活性,结果使细胞内的cAMP水平降低。葡萄糖耗尽时,细胞内cAMP水平升高,即可通过CAP调控其它操纵子的表达。E.coli的乳糖操纵子有Z、Y、A三个结构基因,编码-半乳糖甘酶、乳糖透酶和半乳糖甘乙酰化酶,结构基因上游有一个启动子(P)和一个操纵子(O)。启动子上游有一个CAP蛋白的结合位点。启动子、操纵子和CAP结合位点共同构成乳糖操纵子的调控区。I基因是调节基因,编码产生阻遏蛋白。阻遏蛋白为四聚体,每个亚基相同。在没有乳糖的条件下,阻遏蛋白能与操纵子结合。由于操纵子与启动子有部分重叠,阻遏蛋白与操纵子结合后,抑制结构基因的转录。但是阻遏蛋白的抑制作用并不是绝对的。乳糖存在时,乳糖经透酶作用进入细胞,经-半乳糖甘酶催化,转变成半乳糖和葡萄糖,同时催化一小部分乳糖转变成异乳糖。异乳糖作为诱导剂与阻遏蛋白结合,使阻遏蛋白构象发生改变,导致阻遏蛋白与操纵基因的解聚,引起结构基因的转录。lac操纵子中的lac启动子是弱启动子,RNA聚合酶与之结合的能力很弱,只有CAP结合到启动子上游的CAP结合位点后,促进RNA聚合酶与启动子的结合,才能有效转录。在这种调控中,CAP起正调控作用。乳糖操纵子的转录起始由CAP和阻遏蛋白两种调控因子来控制,可因葡萄糖和乳糖的存在与否而有4种不同的组合。A. 葡萄糖存在、乳糖不存在:此时无诱导剂存在,阻遏蛋白与DNA结合,而且由于葡萄糖的存在,CAP也不能发挥正调控作用,基因处于关闭状态。B. 葡萄糖和乳糖都不存在:在没有葡萄糖的情况下,CAP可以发挥正调控作用。但由于没有诱导剂,阻遏蛋白的负调节作用是基因仍然处于关闭状态。C. 葡萄糖和乳糖都存在:乳糖的存在对基因的转录产生诱导作用。但由于葡萄糖的存在使细胞cAMP水平降低,cAMP-CAP复合物不能形成,CAP不能结合到CAP结合位点上,转录仍不能启动,基因处于关闭状态。D. 葡萄糖不存在、乳糖存在:此时CAP可以发挥正调控作用,阻遏蛋白由于诱导剂的存在而失去负调控作用,基因被打开,启动转录。1)阻遏蛋白的负性调节:在没有乳糖的条件下,阻遏蛋白能与操纵序列O结合,抑制了RNA聚合酶与启动子P的结合,从而抑制酶与启动子的结合,使乳糖操纵子处于阻遏状态。2)CAP的正性调节:分解代谢基因激活(CAP)分子内存在DNA和CAMP结合位点,当没有葡萄糖使,CAMP浓度升高,CAMP与CAP结合,CAMPCAP复合物结合于CAP结合位点,提高了乳糖操纵子的转录活性。3)不同生长条件下的协调调节:是指LAC操纵子阻遏蛋白的负性调节与CAP的正性调节机制协调合作。CAP不能激活被阻遏蛋白封闭的基因转录,反之没有CAP的存在来加强转录活性,即使阻遏蛋白从操纵子上解离,基因仍无转录活性。具体以下4种情况。阿拉伯糖操纵子的转录调控色氨酸操纵子的转录调控DNA片段倒位对基因表达的调控 转录终止的调控:分为依赖p因子和不依赖p因子的终止调控,核糖体也参与转录终止。2) 翻译的可调控性及调控方式:SD序列对翻译的影响A.SD序列的顺序及位置对翻译的影响不同的SD序列有一定的差异,因而翻译起始效率不一样。SD序列的核心序列是六个嘌呤(AGGAGG),SD序列与核糖体小亚基中16S rRNA 3端的互补序列配对结合,使起始密码子定位于翻译起始部位。SD1、SD2、SD3的序列可以不同,SD1/ORF1,SD2/ORF2,SD3/ORF3的AUG和SD之间的距离也不同。核糖体以不同的效率结合不同的SD和起始翻译。SD序列位于起始密码子AUG上游813个碱基处,不同的开放阅读框上游的SD序列与起始密码子之间的距离是不同的,这使得起始密码子在翻译起始部位定位的精确度不同,因而翻译的起始效率也不相同。此外,某些蛋白质与SD序列的结合也会影响mRNA与核糖体的结合,从而影响蛋白质的翻译。不同的SD序列有一定的差异,因而翻译起始效率不一样。SD序列与起始密码子之间的距离,也影响mRNA翻译效率。核糖体以不同的效率结合不同的SD和起始翻译。 不同的开放阅读框上游的SD序列与起始密码子之间的距离是不同,这使起始密码子在翻译起始部位定位的精确度不同,因而翻译的起始效率也不同。B. mRNA二级结构隐蔽SD序列的作用在某些mRNA分子中,核糖体结合位点在茎环中,使核糖体无法结合,只有破坏茎环结构,核糖体才能结合。(红霉素抗性的细菌编码一种红霉素甲基化酶,该酶使核糖体23S mRNA上特定位点的一个腺嘌呤甲基化,阻止红霉素的结合。红霉素通过该位点结合于核糖体,抑制蛋白质合成。)mRNA的稳定性 许多细菌mRNA降解速度很快,细菌的生理状态和环境因素都会影响mRNA的降解速度。细菌mRNA的降解是由核酸内、外切酶共同完成的。翻译产物对翻译的调控:如核糖体蛋白的调控、翻译终止因子RF2调节自身的翻译。1核糖体蛋白:核糖体蛋白合成的控制主要是在翻译水平。每个操纵子转录的mRNA所编码的蛋白质中都有一种蛋白(或两种蛋白形成的一个复合物)可以结合到多顺反子上游的一个特定部位,阻止核糖体结合和起始翻译。2翻译终止因子RF2调节自身的翻译:RF2 识别终止密码 UGA 和 UAA,RF1 识别终止密码 UAG 和 UAA。小分子RNA的调控作用1调整基因表达产物的类型2低水平表达基因的控制5. 真核生物转录水平的基因表达调控机制。P891)转录起始复合物的形成 反式作用因子通过与顺式作用元件结合来影响转录起始复合物的形成。 TATA因子结合TATA盒,并与其他转录因子一起辅助RNA pol II与启动子结合,形成稳定的转录复合物。2)转录起始的调控 真核基因表达的转录水平的调控机制涉及反式作用因子的激活及反式作用因子的作用。反式作用因子的活性调节:A.表达式调节;B.共价修饰;C.配体结合;D.蛋白质与蛋白质相互作用。反式作用因子与顺式作用元件的结合反式作用因子的作用方式:A.成环:反式作用因子结合于增强子后,利用DNA的柔曲性,弯曲成环,与RNA聚合酶结合位点靠近而发挥作用。B.扭曲:使DNA构型改变而发挥作用。C.滑动:反式作用因子结合到特异的位点上,然后沿DNA滑动到另一特异的序列发挥作用。D.Oozing:一种反式作用因子与顺式作用元件 结合,促进另一种反式作用因子与邻近的顺式作用元件结合,后者又促使下一个反式作用因子与其顺式作用元件的结合,直到基因的转录起始点,进而影响基因的转录。 反式作用因子的组合式调控作用:反式作用因子结合顺式作用元件后,可激活转录,也可抑制转录。反式作用因子对基因表达的调控不是由单一因子完成的,而是几种因子组合,发挥特定的作用,称为组合式基因调控。3)转录后水平的调控5端加帽和3端多聚腺苷酸化的调控意义: 加帽和poly(A)尾不是mRNA稳定的唯一因素,但是十分重要,保证mRNA在转录过程中不被降解。mRNA的选择剪接对基因表达的调控作用A. mRNA选择性剪接: 真核细胞前体mRNA的剪接过程中,参加拼接的外显子可以不按其在基因组的线性分布次序拼接,内涵子也可以不被切除而保留,即一个外显子或内含子是否出现在成熟的mRNA中是可以选择的,这种剪接方式称为选择性剪接。包括:外显子选择、内含子选择、互斥外显子、内部剪接位点。B. 选择剪接对基因表达的调控作用mRNA运输的控制mRNA稳定性条件 调控主要是通过反式作用因子、顺式作用元件和RNA聚合酶的相互作用来完成的。当反式作用因子和顺式作用元件结合后,将影响转录起始复合物的形成,从而影响转录的起始和效率。因此真核生物的转录调控特点在于:反式作用因子的结构作用特点,以及反式作用因子如何影响转录起始过程,特别是转录起始复合物的形成。1)反式作用因子有三个明显的结构作用特点:分子中含有DNA识别结合域、转录激活域、蛋白质蛋白质结合域;能特异性识别及结合基因上游调控区的顺式作用元件;结合后,可激活或阻遏下游基因的表达。DNA结合域有以下结构模式:锌指结构、同源结构域、亮氨酸拉链结构、螺旋环螺旋结构,碱性结构。转录活性域通常也具有酸性a螺旋结构域,富含谷氨酰胺结构域,富含脯氨酸结构域。反式作用因子通过上述结构特征介导反式作用因子与反式元件的相互作用。2)反式作用因子对转录起始的调控涉及反式作用因子的活性调节以及反式作用因子与顺式作用元件的结合方式及特点。活性调节:反式作用因子合成后,可以无活性的状态存在,也可以在需要时才合成,合成后就有活性。总之,反式作用因子的激活包括以下4种类型:A.表达式调节:这类因子合成出来后就有活性,只在需要时才合成并迅速降解,不能积累。 B.共价修饰调节:包括磷酸化去磷酸化修饰和糖基化修饰。 C.配体结合后激活:如某些激素的受体型的转录调控因子,与激素结合后即被激活。 D.蛋白质蛋白质相互作用:形成同源或异源二聚体后,才有调节活性。与顺式元件的结合方式及特点:反式作用因子被激活后,即可结合上游启动子元件和增强子元件中的保守性序列。只有少数是优先于DNA序列结合,然后才被激活。A.作用方式:反式作用因子的结合位点一般离其所调控的基因域或RNA聚合酶结合位点的距离较远,一般通过成环、扭曲、滑动、Oozing等方式影响转录起始的调节。B.组合式调控作用:反式作用因子的作用可以是激活转录,也可以是抑制转录,但反式作用因子对基因表达的调控不是由单一因子完成的,而是几种因子组合发挥特定的作用。不同因子的正或负调控的综合结果,影响着基因的最后转录与否,而且产生的净效应也不是简单加和的结果。 一种反式作用因子可参与调控不同基因的表达,几种不同的反式作用因子可以控制一个基因的表达。通过上述组合式的表达,使有限数量的反式作用因子可以调控不同基因的表达。6. 在大肠杆菌中如何获得蛋白质类的基因工程产品。P158、P1771)目的基因:插入大肠杆菌表达的目的基因可以是真核基因也可以是原核基因,目的基因如果来自真核细胞,必须是cDNA,并除去5端非编码区和信号肽编码区。2)选择合适的载体:所用载体必须是大肠杆菌表达载体pRSET质粒。3)选择合适的限制性酶分别切割载体和靶基因片段4)用连接酶连接目的基因与载体:对于pRSET来说,目的基因与载体有两种不同的连接方式,可构建两种不同的重组DNA表达载体,产生两种不同的蛋白:即融合型蛋白和非融合型蛋白。5)转化:将重组DNA分子转入受体细胞(用氯化钙制备感受态细胞)可采用CaCl2制备感受态细胞,也可使用电转化、PEG方法等。6)筛选:包括抗生素耐药菌株的筛选及重组转化子的筛选7)表达:选择受体菌株和诱导条件,A. 受体菌与表达载体匹配;B.诱导条件主要由启动子决定。为了提高外源基因的表达水平,常用的方法是将受体菌的生长与外源基因的表达分开。8)从分子量、生物活性等方面对表达产物进行初步鉴定9)表达产物的分离纯化。7. 如何实现疾病基因的克隆?基因克隆即是在体外通过人工剪、接,将不同来源的DNA分子组成一个重组体,然后进入宿主细胞进行扩增或表达。疾病基因克隆通常包括如下步骤:1)目的基因的提取:疾病基因的提取;2)基因载体(克隆载体)的选择与构建;3)限制性酶切:将疾病基因切成不同大小的片段;4)连接到另一个DNA分子上(克隆载体);5)转化:将这个重组DNA分子转入受体细胞;6)筛选和鉴定:对吸收了重组DNA的受体细胞进行筛选和鉴定;7)基因表达:对含有重组DNA的细胞进行大量培养,检测外源基因是否表达。8. PCR的原理和引物设计原则。P185PCR的基本原理:PCR是模板DNA、引物和4种dNTP存在的条件下依赖DNA聚合酶进行体外的酶促DNA合成反应,是在体外特异性扩增位于两段已知序列之间的DNA区段的一种方法。反应体系中包括DNA模板、耐热的TaqDNA聚合酶、化学合成的寡聚核苷酸引物、4种dNTP以及合适的缓冲体系。PCR技术的特异性取决于引物与模板结合的特异性。反应分为3步:变性,退火和延伸。是半保留复制。原理:PCR的原理与细胞内DNA复制相似,但反应体系较简单。是根据DNA半保留复制原理,DNA在不同温度下变性、复性的特性,以待扩增的目的DNA分子为模板,以一对分别与模板5末端和3末端互补配对的寡核苷酸片段为引物,在4种dNTP和耐热的TaqDNA聚合酶及合适的缓冲体系中,通过人为控制温度(高温变性、低温退火、中温延伸)发生依赖DNA聚合酶的酶促合成反应,循环多次后可使模板上介于两个引物之间的目的DNA片段得到扩增。其特异性取决于引物与模板结合的特异性。PCR引物设计原则:1)引物长度一般为1530个核苷酸。2)引物中的碱基尽可能随机分布,避免出现嘌呤、嘧啶的堆积现象。引物序列中3端不应有连续3个G和C,否则会使引物在模板的G+C富集区错误配对。引物中G+C的含量在4555%左右。设计引物时要考虑3和5端引物具有相似的Tm值。引物长度要确保解链温度不低于54oC。3)引物自身内部不应存在互补序列以避免折叠成发夹结构。4)两个引物之间不应存在互补序列,尤其应避免3端的互补重叠。5)引物的碱基序列不应与非扩增区域有同源性。要求在引物设计时采用计算机进行辅助检索分析。6)引物3端是引发延伸的起点,因此一定要与模板DNA配对。每条引物的3末端序列不能与任一条引物中的任何序列互补(互补序列不能超过3个碱基)。7)引物与模板结合是,引物的5端最多可以游离十几个碱基而不影响PCR反应的进行。引物的5端可以修饰,因而可以改变几个碱基,以引入酶切位点。9. 核酸分子杂交的原理和基本过程。P214核酸分子杂交的原理:具有互补序列的两条单链核酸分子在一定条件下(适宜的温度及离子强度等)碱基互补配对结合,重新形成双链;在这一过程中,核酸分子经历了变性和复性的变化,以及复性过程中各分子间键的形成和断裂等。杂交的双方是待测核酸序列和已知核酸序列。在杂交体系中已知的核酸序列称作探针,探针通常用于进行核素或非核素示踪标记。基本过程:1)Southern印迹杂交:鉴别DNA靶分子。待测核酸样品的制备:制备待测DNA,DNA的限制酶消化;待测DNA样品的电泳分离;凝胶中的核酸变性(碱变性);Southern转膜;探针的制备;Southern杂交(预杂交、杂交、洗脱);杂交结果的检测。2)Northern印迹杂交:鉴别RNA靶分子。实验准备,创造一个无RNA酶的环境;制备凝胶;样品的处理,确保核酸样品具有相当的纯度和完整性;RNA的电泳;RNA的转移;RNA的固定;探针标记;Northern杂交;杂交结果的检测。10. 基因治疗的基本策略。P270基因治疗理论上可以通过两个基本策略达到目的,即原位矫正病变基因和正常基因取代或干预。1)原位矫正病变基因: 如同外科手术,切除病变部分,换上正常健康基因,目前难以做到。2)正常基因取代或干预:基因置换,用正常的基因替换致病基因。即将特定的目的基因导入特定的细胞,通过定位同源重组,以导入正常基因置换基因组内原有的缺陷

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论