天津2020版高考数学复习9.7圆锥曲线的综合问题精练.docx_第1页
天津2020版高考数学复习9.7圆锥曲线的综合问题精练.docx_第2页
天津2020版高考数学复习9.7圆锥曲线的综合问题精练.docx_第3页
天津2020版高考数学复习9.7圆锥曲线的综合问题精练.docx_第4页
天津2020版高考数学复习9.7圆锥曲线的综合问题精练.docx_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

9.7圆锥曲线的综合问题挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.定点与定值问题1.了解圆锥曲线的简单应用2.掌握解析几何中求解定点、定值问题的方法和步骤2013天津,18定值问题直线的斜率、向量的运算2.参变量的取值范围与最值问题1.知道圆锥曲线的简单几何性质(如范围、对称性、顶点、渐近线、离心率等),并能用性质解决一些简单的圆锥曲线问题2.理解圆锥曲线离心率的定义,并会求圆锥曲线的离心率2017天津,192016天津,192015天津,19圆锥曲线的几何性质直线方程3.存在性问题1.理解圆锥曲线中存在性问题的基本解法2.理解转化思想在圆锥曲线中的应用2015北京,19圆锥曲线中存在性问题的推理论证直线与椭圆的位置关系分析解读1.会处理动曲线(含直线)过定点的问题.2.会证明与曲线上的动点有关的定值问题.3.会按条件建立目标函数,研究变量的最值问题及变量的取值范围问题,注意运用“数形结合思想”以及“几何法”求某些量的最值.4.能与其他知识交汇,从假设结论成立入手,通过推理论证解答存在性问题.5.本节在高考中围绕直线与圆锥曲线的位置关系,展开对定值、最值、参数取值范围等问题的考查,注重对数学思想方法的考查,分值约为14分,难度偏大.炼技法【方法集训】方法1与圆锥曲线相关的最值、范围问题的解题方法1.已知椭圆W:x2a2+y2b2=1(ab0)的左右焦点分别为F1,F2,且|F1F2|=2,椭圆上一动点P满足|PF1|+|PF2|=23.(1)求椭圆W的标准方程及离心率;(2)如图,过点F1作直线l1与椭圆W交于点A,C,过点F2作直线l2l1,且l2与椭圆W交于点B,D,l1与l2交于点E,试求四边形ABCD面积的最大值.解析(1)由已知,得2c=2,2a=23,a2=b2+c2,解得c=1,a=3,b=2.所以椭圆W的标准方程为x23+y22=1,离心率e=ca=33.(2)连接EO.由题意知EF1EF2,O为F1F2的中点,所以|EO|=12|F1F2|=1.所以E点轨迹是以原点为圆心,1为半径的圆.显然E点在椭圆W的内部.S四边形ABCD=SABC+SADC=12|AC|BE|+12|AC|DE|=12|AC|BD|.当直线l1,l2中一条与x轴垂直时,不妨令l2x轴,此时AC为长轴,BDx轴,把x=1代入椭圆方程,可求得y=233,则|BD|=433,此时S四边形ABCD=12|AC|BD|=4.当直线l1,l2的斜率都存在时,设直线l1:x=my-1(m0),A(x1,y1),C(x2,y2).联立x=my-1,x23+y22=1,消去x,得(2m2+3)y2-4my-4=0.所以y1+y2=4m2m2+3,y1y2=-42m2+3,则|AC|=(1+m2)(y1-y2)2=43(m2+1)2m2+3.同理,|BD|=43(m2+1)2+3m2.S四边形ABCD=12|AC|BD|=1243(m2+1)2m2+343(m2+1)2+3m2=24(m2+1)2(2m2+3)(3m2+2)=24(m4+2m2+1)6m4+13m2+6=4(6m4+12m2+6)6m4+13m2+6=41-m26m4+13m2+6b0)的右焦点为F(1,0),离心率为12.(1)求椭圆C的方程;(2)A,B是椭圆C在y轴右侧部分上的两个动点,若原点O到直线AB的距离为3,证明:ABF的周长为定值.解析(1)由题意得a2=b2+1,ca=12,解得a2=4,b2=3.所以椭圆C的方程为x24+y23=1.(2)证明:当直线AB垂直于x轴时,直线AB的方程为x=3,不妨令A3,32,B3,-32,因为F(1,0),所以|AF|=|BF|=(3-1)2+322=4-32.因为|AB|=3,所以|AF|+|BF|+|AB|=4.当直线AB不垂直于x轴时,设直线AB的方程为y=kx+m(k0).因为原点O到直线AB的距离为3,所以|m|1+k2=3,故m2=3(1+k2).由y=kx+m,x24+y23=1,得(3+4k2)x2+8kmx+4m2-12=0,即(3+4k2)x2+8kmx+12k2=0.设A(x1,y1),B(x2,y2),则x1+x2=-8km3+4k2,x1x2=12k23+4k2.所以|AB|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2=1+k2-8km3+4k22-412k23+4k2=|m|364k2m2-48k2(3+4k2)(3+4k2)2=4|m|k|333+4k2=4|m|k|3+4k2.因为A,B在y轴右侧,所以mk0),则p2=1,即p=2.所以C的方程为y2=4x.(2)直线AD过定点.理由如下:设Am24,m,则|AF|=m24+1=|FB|,则Bm24+2,0,所以直线AB的斜率为m-2=-m2.如图,设与直线AB平行,且与抛物线C相切的直线为y=-m2x+b,由y2=4x,y=-m2x+b,得my2+8y-8b=0,由=64-4m(-8b)=0,得b=-2m.所以解方程是y=-4m,所以点D4m2,-4m.当m244m2,即m2时,直线AD的方程为y-m=m+4mm24-4m2x-m24,整理得y=4mm2-4(x-1),所以直线AD过点(1,0).当m24=4m2,即m=2时,直线AD的方程为x=1,直线AD过点(1,0).综上所述,直线AD过定点(1,0).方法3存在性问题的解题策略5.(2015四川,20,13分)如图,椭圆E:x2a2+y2b2=1(ab0)的离心率是22,过点P(0,1)的动直线l与椭圆相交于A,B两点.当直线l平行于x轴时,直线l被椭圆E截得的线段长为22.(1)求椭圆E的方程;(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得|QA|QB|=|PA|PB|恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.解析(1)由已知得,点(2,1)在椭圆E上.因此,2a2+1b2=1,a2-b2=c2,ca=22.解得a=2,b=2.所以椭圆E的方程为x24+y22=1.(2)存在.理由如下:当直线l与x轴平行时,设直线l与椭圆相交于C,D两点.如果存在定点Q满足条件,则有|QC|QD|=|PC|PD|=1,即|QC|=|QD|.所以Q点在y轴上,可设Q点的坐标为(0,y0).当直线l与x轴垂直时,设直线l与椭圆相交于M,N两点,则M,N的坐标分别为(0,2),(0,-2).由|QM|QN|=|PM|PN|,有|y0-2|y0+2|=2-12+1,解得y0=1或y0=2.所以,若存在不同于点P的定点Q满足条件,则Q点坐标只可能为(0,2).下面证明:当Q的坐标为(0,2)时,对任意直线l,均有|QA|QB|=|PA|PB|.当直线l的斜率不存在时,由上可知,结论成立.当直线l的斜率存在时,可设直线l的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立x24+y22=1,y=kx+1,得(2k2+1)x2+4kx-2=0.其判别式=(4k)2+8(2k2+1)0,所以,x1+x2=-4k2k2+1,x1x2=-22k2+1.因此1x1+1x2=x1+x2x1x2=2k.易知,点B关于y轴对称的点B的坐标为(-x2,y2).又kQA=y1-2x1=kx1-1x1=k-1x1,kQB=y2-2-x2=kx2-1-x2=-k+1x2=k-1x1,所以kQA=kQB,即Q,A,B三点共线.所以|QA|QB|=|QA|QB|=|x1|x2|=|PA|PB|.故存在与P不同的定点Q(0,2),使得|QA|QB|=|PA|PB|恒成立.过专题【五年高考】A组自主命题天津卷题组1.(2017天津,19,14分)设椭圆x2a2+y2b2=1(ab0)的左焦点为F,右顶点为A,离心率为12.已知A是抛物线y2=2px(p0)的焦点,F到抛物线的准线l的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若APD的面积为62,求直线AP的方程.解析(1)设F的坐标为(-c,0).依题意,ca=12,p2=a,a-c=12,解得a=1,c=12,p=2,于是b2=a2-c2=34.所以,椭圆的方程为x2+4y23=1,抛物线的方程为y2=4x.(2)设直线AP的方程为x=my+1(m0),与直线l的方程x=-1联立,可得点P-1,-2m,故Q-1,2m.将x=my+1与x2+4y23=1联立,消去x,整理得(3m2+4)y2+6my=0,解得y=0或y=-6m3m2+4.由点B异于点A,可得点B-3m2+43m2+4,-6m3m2+4.由Q-1,2m,可得直线BQ的方程为-6m3m2+4-2m(x+1)-3m2+43m2+4+1y-2m=0,令y=0,解得x=2-3m23m2+2,故D2-3m23m2+2,0.所以|AD|=1-2-3m23m2+2=6m23m2+2.又因为APD的面积为62,故126m23m2+22|m|=62,整理得3m2-26|m|+2=0,解得|m|=63,所以m=63.所以,直线AP的方程为3x+6y-3=0或3x-6y-3=0.方法总结1.利用待定系数法求圆锥曲线标准方程的步骤:(1)作判断:根据焦点位置设方程;(2)找等量关系;(3)解方程得结果.2.解决直线与圆锥曲线位置关系问题的基本策略:(1)巧设直线方程:当已知直线与x轴交点固定时,常设为x=my+b的形式,这样可避免对斜率是否存在的讨论;(2)注意整体代入思想的应用,利用根与系数的关系可以简化运算,提高运算效率和正确率.2.(2016天津,19,14分)设椭圆x2a2+y23=1(a3)的右焦点为F,右顶点为A.已知1|OF|+1|OA|=3e|FA|,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BFHF,且MOAMAO,求直线l的斜率的取值范围.解析(1)设F(c,0),由1|OF|+1|OA|=3e|FA|,即1c+1a=3ca(a-c),可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4,所以,椭圆的方程为x24+y23=1.(2)设直线l的斜率为k(k0),则直线l的方程为y=k(x-2).设B(xB,yB),由方程组x24+y23=1,y=k(x-2)消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=8k2-64k2+3,由题意得xB=8k2-64k2+3,从而yB=-12k4k2+3.由(1)知,F(1,0),设H(0,yH),有FH=(-1,yH),BF=9-4k24k2+3,12k4k2+3.由BFHF,得BFFH=0,所以4k2-94k2+3+12kyH4k2+3=0,解得yH=9-4k212k.因此直线MH的方程为y=-1kx+9-4k212k.设M(xM,yM),由方程组y=k(x-2),y=-1kx+9-4k212k消去y,解得xM=20k2+912(k2+1).在MAO中,MOAMAO|MA|MO|,即(xM-2)2+yM2xM2+yM2,化简得xM1,即20k2+912(k2+1)1,解得k-64,或k64.所以,直线l的斜率的取值范围为-,-6464,+.评析本题主要考查椭圆的标准方程和几何性质、直线方程、一元二次不等式等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力以及用方程思想解决问题的能力.3.(2015天津,19,14分)已知椭圆x2a2+y2b2=1(ab0)的左焦点为F(-c,0),离心率为33,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=b24截得的线段的长为c,|FM|=433.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于2,求直线OP(O为原点)的斜率的取值范围.解析(1)由已知有c2a2=13,又由a2=b2+c2,可得a2=3c2,b2=2c2.设直线FM的斜率为k(k0),则直线FM的方程为y=k(x+c).由已知,有kck2+12+c22=b22,解得k=33.(2)由(1)得椭圆方程为x23c2+y22c2=1,直线FM的方程为y=33(x+c),两个方程联立,消去y,整理得3x2+2cx-5c2=0,解得x=-53c或x=c.因为点M在第一象限,可得M的坐标为c,233c.由|FM|=(c+c)2+233c-02=433,解得c=1,所以椭圆的方程为x23+y22=1.(3)设点P的坐标为(x,y),直线FP的斜率为t,得t=yx+1,即y=t(x+1)(x-1),与椭圆方程联立得y=t(x+1),x23+y22=1,消去y,整理得2x2+3t2(x+1)2=6.又由已知,得t=6-2x23(x+1)22,解得-32x-1,或-1x0.设直线OP的斜率为m,得m=yx,即y=mx(x0),与椭圆方程联立,整理可得m2=2x2-23.当x-32,-1时,有y=t(x+1)0,于是m=2x2-23,得m23,233.当x(-1,0)时,有y=t(x+1)0,因此mb0)的左焦点为F,离心率为33,过点F且与x轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若ACDB+ADCB=8,求k的值.解析(1)设F(-c,0),由ca=33,知a=3c.过点F且与x轴垂直的直线为x=-c,代入椭圆方程有(-c)2a2+y2b2=1,解得y=6b3,于是26b3=433,解得b=2,又a2-c2=b2,从而a=3,c=1,所以椭圆的方程为x23+y22=1.(2)设点C(x1,y1),D(x2,y2),由F(-1,0)得直线CD的方程为y=k(x+1),由方程组y=k(x+1),x23+y22=1消去y,整理得(2+3k2)x2+6k2x+3k2-6=0.由根与系数关系可得x1+x2=-6k22+3k2,x1x2=3k2-62+3k2.因为A(-3,0),B(3,0),所以ACDB+ADCB=(x1+3,y1)(3-x2,-y2)+(x2+3,y2)(3-x1,-y1)=6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1)=6-(2+2k2)x1x2-2k2(x1+x2)-2k2=6+2k2+122+3k2.由已知得6+2k2+122+3k2=8,解得k=2.评析本题主要考查椭圆的标准方程和几何性质、直线的方程、向量的运算等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想解决问题的能力.B组统一命题、省(区、市)卷题组考点一定点与定值问题1.(2017课标,20,12分)设O为坐标原点,动点M在椭圆C:x22+y2=1上,过M作x轴的垂线,垂足为N,点P满足NP=2NM.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且OPPQ=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.解析(1)设P(x,y),M(x0,y0),则N(x0,0),NP=(x-x0,y),NM=(0,y0).由NP=2NM得x0=x,y0=22y.因为M(x0,y0)在C上,所以x22+y22=1.因此点P的轨迹方程为x2+y2=2.(2)证明:由题意知F(-1,0).设Q(-3,t),P(m,n),则OQ=(-3,t),PF=(-1-m,-n),OQPF=3+3m-tn,OP=(m,n),PQ=(-3-m,t-n).由OPPQ=1得-3m-m2+tn-n2=1,又由(1)知m2+n2=2,故3+3m-tn=0.所以OQPF=0,即OQPF.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.思路分析(1)设出P、M的坐标,利用NP=2NM得到P、M坐标间的关系,由点M在C上求解.(2)利用向量的坐标运算得OQPF=0,进而证明直线l过曲线C的左焦点F.方法总结求轨迹方程的方法有直接法和间接法.直接法有定义法、待定系数法和直译法.间接法有相关点法、交轨法和参数法.2.(2016山东文,21,14分)已知椭圆C:x2a2+y2b2=1(ab0)的长轴长为4,焦距为22.(1)求椭圆C的方程;(2)过动点M(0,m)(m0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(i)设直线PM,QM的斜率分别为k,k,证明kk为定值;(ii)求直线AB的斜率的最小值.解析(1)设椭圆的半焦距为c.由题意知2a=4,2c=22,所以a=2,b=a2-c2=2.所以椭圆C的方程为x24+y22=1.(2)(i)证明:设P(x0,y0)(x00,y00).由M(0,m),可得P(x0,2m),Q(x0,-2m).所以直线PM的斜率k=2m-mx0=mx0,直线QM的斜率k=-2m-mx0=-3mx0.此时kk=-3.所以kk为定值-3.(ii)设A(x1,y1),B(x2,y2),直线PA的方程为y=kx+m,直线QB的方程为y=-3kx+m.联立y=kx+m,x24+y22=1,整理得(2k2+1)x2+4mkx+2m2-4=0.由x0x1=2m2-42k2+1,可得x1=2(m2-2)(2k2+1)x0.所以y1=kx1+m=2k(m2-2)(2k2+1)x0+m.同理x2=2(m2-2)(18k2+1)x0,y2=-6k(m2-2)(18k2+1)x0+m.所以x2-x1=2(m2-2)(18k2+1)x0-2(m2-2)(2k2+1)x0=-32k2(m2-2)(18k2+1)(2k2+1)x0,y2-y1=-6k(m2-2)(18k2+1)x0+m-2k(m2-2)(2k2+1)x0-m=-8k(6k2+1)(m2-2)(18k2+1)(2k2+1)x0,所以kAB=y2-y1x2-x1=6k2+14k=146k+1k.由m0,x00,可知k0,所以6k+1k26,等号当且仅当k=66时取得.此时m4-8m2=66,即m=147,符合题意.所以直线AB的斜率的最小值为62.3.(2015陕西文,20,12分)如图,椭圆E:x2a2+y2b2=1(ab0)经过点A(0,-1),且离心率为22.(1)求椭圆E的方程;(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.解析(1)由题设知ca=22,b=1,结合a2=b2+c2,解得a=2.所以椭圆E的方程为x22+y2=1.(2)证明:由题设知,直线PQ的方程为y=k(x-1)+1(k2),代入x22+y2=1,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0.由已知可知0.设P(x1,y1),Q(x2,y2),x1x20,则x1+x2=4k(k-1)1+2k2,x1x2=2k(k-2)1+2k2.从而直线AP,AQ的斜率之和kAP+kAQ=y1+1x1+y2+1x2=kx1+2-kx1+kx2+2-kx2=2k+(2-k)1x1+1x2=2k+(2-k)x1+x2x1x2=2k+(2-k)4k(k-1)2k(k-2)=2k-2(k-1)=2.评析本题考查椭圆标准方程与简单性质的同时,重点考查直线与椭圆的位置关系.4.(2015课标文,20,12分)已知椭圆C:x2a2+y2b2=1(ab0)的离心率为22,点(2,2)在C上.(1)求C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.解析(1)由题意有a2-b2a=22,4a2+2b2=1,解得a2=8,b2=4.所以C的方程为x28+y24=1.(2)证明:设直线l:y=kx+b(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代入x28+y24=1得(2k2+1)x2+4kbx+2b2-8=0.故xM=x1+x22=-2kb2k2+1,yM=kxM+b=b2k2+1.于是直线OM的斜率kOM=yMxM=-12k,即kOMk=-12.所以直线OM的斜率与直线l的斜率的乘积为定值.考点二参变量的取值范围与最值问题1.(2018浙江,17,4分)已知点P(0,1),椭圆x24+y2=m(m1)上两点A,B满足AP=2PB,则当m=时,点B横坐标的绝对值最大.答案52.(2018浙江,21,15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+y24=1(x0)上的动点,求PAB面积的取值范围.解析(1)证明:设P(x0,y0),A14y12,y1,B14y22,y2.因为PA,PB的中点在抛物线上,所以y1,y2为方程y+y022=414y2+x02,即y2-2y0y+8x0-y02=0的两个不同的实根.所以y1+y2=2y0,因此,PM垂直于y轴.(2)由(1)可知y1+y2=2y0,y1y2=8x0-y02,所以|PM|=18(y12+y22)-x0=34y02-3x0,|y1-y2|=22(y02-4x0).因此,PAB的面积SPAB=12|PM|y1-y2|=324(y02-4x0)32.因为x02+y024=1(x0b0)的离心率为32,左、右焦点分别是F1,F2.以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:x24a2+y24b2=1,P为椭圆C上任意一点.过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求|OQ|OP|的值;(ii)求ABQ面积的最大值.解析(1)由题意知2a=4,则a=2.又ca=32,a2-c2=b2,可得b=1,所以椭圆C的方程为x24+y2=1.(2)由(1)知椭圆E的方程为x216+y24=1.(i)设P(x0,y0),|OQ|OP|=,由题意知Q(-x0,-y0).因为x024+y02=1,又(-x0)216+(-y0)24=1,即24x024+y02=1,所以=2,即|OQ|OP|=2.(ii)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由0,可得m24+16k2.由根与系数的关系有x1+x2=-8km1+4k2,x1x2=4m2-161+4k2.所以|x1-x2|=416k2+4-m21+4k2.因为直线y=kx+m与y轴交点的坐标为(0,m),所以OAB的面积S=12|m|x1-x2|=216k2+4-m2|m|1+4k2=2(16k2+4-m2)m21+4k2=24-m21+4k2m21+4k2.设m21+4k2=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由0,可得m21+4k2.由可知014时,SOPQ=84k2+14k2-1=81+24k2-18;当0k214时,SOPQ=84k2+11-4k2=8-1+21-4k2.因0k214,则00,b10)和椭圆C2:y2a22+x2b22=1(a2b20)均过点P233,1,且以C1的两个顶点和C2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C1,C2的方程;(2)是否存在直线l,使得l与C1交于A,B两点,与C2只有一个公共点,且|OA+OB|=|AB|?证明你的结论.解析(1)设C2的焦距为2c2,由题意知,2c2=2,2a1=2,从而a1=1,c2=1.因为点P233,1在双曲线x2-y2b12=1上,所以2332-1b12=1,故b12=3.由椭圆的定义知2a2=2332+(1-1)2+2332+(1+1)2=23.于是a2=3,b22=a22-c22=2,故C1,C2的方程分别为x2-y23=1,y23+x22=1.(2)不存在符合题设条件的直线.证明如下:(i)若直线l垂直于x轴,因为l与C2只有一个公共点,所以直线l的方程为x=2或x=-2.当x=2时,易知A(2,3),B(2,-3),所以|OA+OB|=22,|AB|=23,此时,|OA+OB|AB|.当x=-2时,同理可知,|OA+OB|AB|.(ii)若直线l不垂直于x轴,设l的方程为y=kx+m,由y=kx+m,x2-y23=1得(3-k2)x2-2kmx-m2-3=0.当l与C1相交于A,B两点时,设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,从而x1+x2=2km3-k2,x1x2=m2+3k2-3.于是y1y2=k2x1x2+km(x1+x2)+m2=3k2-3m2k2-3.由y=kx+m,y23+x22=1得(2k2+3)x2+4kmx+2m2-6=0.因为直线l与C2只有一个公共点,所以上述方程的判别式=16k2m2-8(2k2+3)(m2-3)=0.化简,得2k2=m2-3,因此OAOB=x1x2+y1y2=m2+3k2-3+3k2-3m2k2-3=-k2-3k2-30,于是OA2+OB2+2OAOBOA2+OB2-2OAOB,即|OA+OB|2|OA-OB|2,故|OA+OB|AB|.综合(i),(ii)可知,不存在符合题设条件的直线.评析本题考查椭圆与双曲线的定义、几何性质、标准方程及直线与圆锥曲线的位置关系,同时考查方程思想,运算、推理能力,综合性较强.2.(2014山东文,21,14分)在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(ab0)的离心率为32,直线y=x被椭圆C截得的线段长为4105.(1)求椭圆C的方程;(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且ADAB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2.证明存在常数使得k1=k2,并求出的值;(ii)求OMN面积的最大值.解析(1)由题意知a2-b2a=32,可得a2=4b2,椭圆C的方程可简化为x2+4y2=a2.将y=x代入可得x=5a5,因此225a5=4105,可得a=2.因此b=1,所以椭圆C的方程为x24+y2=1.(2)(i)证明:设A(x1,y1)(x1y10),D(x2,y2),则B(-x1,-y1),因为直线AB的斜率kAB=y1x1,又ABAD,所以直线AD的斜率k=-x1y1.设直线AD的方程为y=kx+m,由题意知k0,m0.由y=kx+m,x24+y2=1可得(1+4k2)x2+8mkx+4m2-4=0.所以x1+x2=-8mk1+4k2,因此y1+y2=k(x1+x2)+2m=2m1+4k2.由题意知x1-x2,所以k1=y1+y2x1+x2=-14k=y14x1.所以直线BD的方程为y+y1=y14x1(x+x1).令y=0,得x=3x1,即M(3x1,0).可得k2=-y12x1.所以k1=-12k2,即=-12.因此存在常数=-12使得结论成立.(ii)直线BD的方程为y+y1=y14x1(x+x1),令x=0,得y=-34y1,即N0,-34y1.由(i)知M(3x1,0),可得OMN的面积S=123|x1|34|y1|=98|x1|y1|.因为|x1|y1|x124+y12=1,当且仅当|x1|2=|y1|=22时等号成立,此时S取得最大值98,所以OMN面积的最大值为98.C组教师专用题组考点一定点与定值问题1.(2013陕西,20,13分)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是PBQ的角平分线,证明直线l过定点.解析(1)如图,设动圆圆心为O1(x,y),由题意,知|O1A|=|O1M|,当O1不在y轴上时,过O1作O1HMN交MN于H,则H是MN的中点,|O1M|=x2+42,又|O1A|=(x-4)2+y2,(x-4)2+y2=x2+42,化简得y2=8x(x0).又当O1在y轴上时,O1与O重合,点O1的坐标(0,0)也满足方程y2=8x,动圆圆心的轨迹C的方程为y2=8x.(2)由题意,设直线l的方程为y=kx+b(k0),P(x1,y1),Q(x2,y2),将y=kx+b代入y2=8x中,得k2x2+(2bk-8)x+b2=0.其中=-32kb+640.由根与系数的关系得,x1+x2=8-2bkk2,x1x2=b2k2,x轴平分PBQ,y1x1+1=-y2x2+1,即y1(x2+1)+y2(x1+1)=0,(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,2kx1x2+(b+k)(x1+x2)+2b=0,将,代入得2kb2+(k+b)(8-2bk)+2k2b=0,k=-b,此时0,直线l的方程为y=k(x-1),即直线l过定点(1,0).2.(2014安徽,19,13分)如图,已知两条抛物线E1:y2=2p1x(p10)和E2:y2=2p2x(p20),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.(1)证明:A1B1A2B2;(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记A1B1C1与A2B2C2的面积分别为S1与S2,求S1S2的值.解析(1)证明:设直线l1,l2的方程分别为y=k1x,y=k2x(k1,k20),则由y=k1x,y2=2p1x,得A12p1k12,2p1k1,由y=k1x,y2=2p2x,得A22p2k12,2p2k1.同理可得B12p1k22,2p1k2,B22p2k22,2p2k2.所以A1B1=2p1k22-2p1k12,2p1k2-2p1k1=2p11k22-1k12,1k2-1k1,A2B2=2p2k22-2p2k12,2p2k2-2p2k1=2p21k22-1k12,1k2-1k1,故A1B1=p1p2A2B2,所以A1B1A2B2.(2)由(1)知A1B1A2B2,同理可得B1C1B2C2,C1A1C2A2.所以A1B1C1A2B2C2.因此S1S2=|A1B1|A2B2|2.又由(1)中的A1B1=p1p2A2B2知|A1B1|A2B2|=p1p2.故S1S2=p12p22.考点二参变量的取值范围与最值问题1.(2014湖北,9,5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且F1PF2=3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433B.233C.3D.2答案A2.(2014四川,20,13分)已知椭圆C:x2a2+y2b2=1(ab0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当|TF|PQ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论