高中物理动力学重难点总结2.doc_第1页
高中物理动力学重难点总结2.doc_第2页
高中物理动力学重难点总结2.doc_第3页
高中物理动力学重难点总结2.doc_第4页
高中物理动力学重难点总结2.doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

力与运动:运动的描述、受力分析与平衡、牛顿运动定律的运用。(运动的描述是物理学的重要基础,其理论体系为用数学函数或图象的方法来描述、推断质点的运动规律,公式和推论众多,其中,平抛运动、追及问题、实际运动的描述为重点和难点;无论是平衡问题,还是动力学问题,一般都需要进行受力分析,而正交分解法、隔离法与整体法相结合是最常用、最重要的思想方法;运动的描述与受力分析是两个相互独立的内容,它们通过牛顿运动定律才能连成一个有机的整体。)一、运动的描述(一)匀变速直线运动的几个重要推论和解决运动规律的方法1某段时间内的平均速度等于这段时间的中间时刻的瞬时速度,即tv2在连续相等的时间间隔T内的位移之差s为恒量,且saT23在初速度为零的匀变速直线运动中,相等的时间T内连续通过的位移之比为:s1s2s3sn135(2n1)通过连续相等的位移所用的时间之比为:t1t2t3tn4竖直上抛运动(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究(3)整体性:整个运动过程实质上是匀变速直线运动5解决匀变速直线运动问题的常用方法(1)公式法灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决(2)比例法在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化(3)逆向过程处理法逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法(4)速度图象法速度图象法是力学中一种常见的重要方法,它能够将问题中的许多关系,特别是一些隐藏关系,在图象上明显地反映出来,从而得到正确、简捷的解题方法(二)运动的合成与分解1小船渡河设水流的速度为v1,船的航行速度为v2,河的宽度为d(1)过河时间t仅由v2沿垂直于河岸方向的分量v决定,即t,与v1无关,所以当v2垂直于河岸时,渡河所用的时间最短,最短时间tmin(2)渡河的路程由小船实际运动轨迹的方向决定当v1v2时,最短路程smind;当v1v2时,最短路程smin,如图11 所示2轻绳、轻杆两末端速度的关系 图11(1)分解法把绳子(包括连杆)两端的速度都沿绳子的方向和垂直于绳子的方向分解,沿绳子方向的分运动相等(垂直方向的分运动不相关),即v1cos 1v2cos_2(2)功率法通过轻绳(轻杆)连接物体时,往往力拉轻绳(轻杆)做功的功率等于轻绳(轻杆)对物体做功的功率3平抛运动如图12所示,物体从O处以水平初速度v0抛出,经时间t到达P点图12(1)加速度(2)速度合速度的大小v设合速度的方向与水平方向的夹角为,有:tan ,即arctan (3)位移设合位移的大小s合位移的方向与水平方向的夹角为,有:tan ,即arctan 要注意合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即2,而是tan 2tan (4)时间:由sygt2得,t,平抛物体在空中运动的时间t只由物体抛出时离地的高度sy决定,而与抛出时的初速度v0无关(5)速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(g)相等,且必沿竖直方向,如图13所示图13任意两时刻的速度与速度的变化量v构成直角三角形,v沿竖直方向注意:平抛运动的速率随时间并不均匀变化,而速度随时间是均匀变化的(6)带电粒子(只受电场力的作用)垂直进入匀强电场中的运动与平抛运动相似,出电场后做匀速直线运动,如图14所示图14故有:y重点、难点(一)直线运动对直线运动规律的问题一般以图象的应用或追及问题出现这类题目侧重于考查学生应用数学知识处理物理问题的能力对于追及问题,存在的困难在于选用哪些公式来列方程,作图求解,而熟记和运用好直线运动的重要推论往往是解决问题的捷径例1如图15甲所示,A、B两辆汽车在笔直的公路上同向行驶当B车在A车前s84 m处时,B车的速度vB4 m/s,且正以a2 m/s2的加速度做匀加速运动;经过一段时间后,B车的加速度突然变为零A车一直以vA20 m/s的速度做匀速运动,从最初相距84 m时开始计时,经过t012 s后两车相遇问B车加速行驶的时间是多少?解法:A、公式法;B图像法。(二)平抛运动对于这类问题除了要熟记两垂直方向上的分速度、分位移公式外,还要特别理解和运用好速度偏转角公式、位移偏转角公式以及两偏转角的关系式(即tan 2tan )例2图16甲所示,m为在水平传送带上被传送的小物体(可视为质点),A为终端皮带轮已知皮带轮的半径为r,传送带与皮带轮间不会打滑当m可被水平抛出时,A轮每秒的转数最少为()例1:B图像法例2;图16甲ABC D二、受力分析(一)常见的五种性质的力产生原因或条件方向大小重力由于地球的吸引而产生总是竖直向下(铅直向下或垂直水平面向下),注意不一定指向地心,不一定垂直地面向下G重mgG地球表面附近一切物体都受重力作用,与物体是否处于超重或失重状态无关弹力接触弹性形变支持力的方向总是垂直于接触面而指向被支持的物体压力的方向总是垂直于接触面而指向被压的物体绳的拉力总是沿着绳而指向绳收缩的方向Fkx弹力的大小往往利用平衡条件和牛顿第二定律求解摩擦力滑动摩擦力接触,接触面粗糙存在正压力与接触面有相对运动与接触面的相对运动方向相反fFN只与、FN有关,与接触面积、相对速度、加速度均无关静摩擦力接触,接触面粗糙存在正压力与接触面存在相对运动的趋势与接触面相对运动的趋势相反与产生相对运动趋势的动力的大小相等存在最大静摩擦力,最大静摩擦力的大小由粗糙程度、正压力决定电场力点电荷间的库仑力:真空中两个点电荷之间的相互作用作用力的方向沿两点电荷的连线,同种电荷相互排斥,异种电荷相互吸引Fk电场对处于其中的电荷的作用正电荷的受力方向与该处场强的方向一致,负电荷的受力方向与该处场强的方向相反FqE磁场力安培力:磁场对通电导线的作用力FB,FI,即安培力F垂直于电流I和磁感应强度B所确定的平面安培力的方向可用左手定则来判断FBIL安培力的实质是运动电荷受洛伦兹力作用的宏观表现洛伦兹力:运动电荷在磁场中所受到的力用左手定则判断洛伦兹力的方向特别要注意四指应指向正电荷的运动方向;若为负电荷,则四指指向运动的反方向带电粒子平行于磁场方向运动时,不受洛伦兹力的作用;带电粒子垂直于磁场方向运动时,所受洛伦兹力最大,即f洛qvB(二)力的运算、物体的平衡1力的合成与分解遵循力的平行四边形定则(或力的三角形定则)2平衡状态是指物体处于匀速直线运动或静止状态,物体处于平衡状态的动力学条件是:F合0或Fx0、Fy0、Fz0注意:静止状态是指速度和加速度都为零的状态,如做竖直上抛运动的物体到达最高点时速度为零,但加速度等于重力加速度,不为零,因此不是平衡状态3平衡条件的推论(1)物体处于平衡状态时,它所受的任何一个力与它所受的其余力的合力等大、反向(2)物体在同一平面上的三个不平行的力的作用下处于平衡状态时,这三个力必为共点力物体在三个共点力的作用下而处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形,如图18所示图184共点力作用下物体的平衡分析重点、难点(一)正交分解法、平行四边形法则的应用1正交分解法是分析平衡状态物体受力时最常用、最主要的方法即当F合0时有:Fx合0,Fy合0,Fz合02平行四边形法有时可巧妙用于定性分析物体受力的变化或确定相关几个力之比例3举重运动员在抓举比赛中为了减小杠铃上升的高度和发力,抓杠铃的两手间要有较大的距离某运动员成功抓举杠铃时,测得两手臂间的夹角为120,运动员的质量为75 kg,举起的杠铃的质量为125 kg,如图19甲所示求该运动员每只手臂对杠铃的作用力的大小(取g10 m/s2)图19甲【分析】由手臂的肌肉、骨骼构造以及平时的用力习惯可知,伸直的手臂主要沿手臂方向发力取手腕、手掌为研究对象,握杠的手掌对杠有竖直向上的弹力和沿杠向外的静摩擦力,其合力沿手臂方向,如图19乙所示图19乙【解析】手臂对杠铃的作用力的方向沿手臂的方向,设该作用力的大小为F,则杠铃的受力情况如图19丙所示图19丙由平衡条件得:2Fcos 60mg解得:F1250 N答案1250 N(二)带电粒子在复合场中的平衡问题带电粒子在复合场中受力平衡的物理情境,常常是在正交的电场和磁场中的平衡问题及在电场和重力场中的平衡问题。在如图111所示的速度选择器中,选择的速度v;在如图112所示的电磁流量计中,流速v,流量Q图111 图112例5在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成角的直线MN运动,如图113所示由此可判断下列说法正确的是()图113A如果油滴带正电,则油滴从M点运动到N点B如果油滴带正电,则油滴从N点运动到M点C如果电场方向水平向右,则油滴从N点运动到M点D如果电场方向水平向左,则油滴从N点运动到M点【解析】油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以物体做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M点向N点运动,故选项A正确、B错误若电场方向水平向右,则油滴需带负电,此时斜向右上方与MN垂直的洛伦兹力对应粒子从N点运动到M点,即选项C正确同理,电场方向水平向左时,油滴需带正电,油滴是从M点运动到N点的,故选项D错误如图114甲所示,悬挂在O点的一根不可伸长的绝缘细线下端挂有一个带电荷量不变的小球A在两次实验中,均缓慢移动另一带同种电荷的小球B当B到达悬点O的正下方并与A在同一水平线上,A处于受力平衡时,悬线偏离竖直方向的角度为若两次实验中B的电荷量分别为q1和q2,分别为30和45,则为 ()图114甲A2B3C2D3【解析】对A球进行受力分析,如图114 乙所示,图114乙由于绳子的拉力和点电荷间的斥力的合力与A球的重力平衡,故有:F电mgtan ,又F电k设绳子的长度为L,则A、B两球之间的距离rLsin ,联立可得:q,由此可见,q与tan sin2 成正比,即2,故选项C正确三、牛顿运动定律的应用(一)深刻理解牛顿第一、第三定律1牛顿第一定律(惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止(1)理解要点运动是物体的一种属性,物体的运动不需要力来维持它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性惯性是物体的固有属性,与物体的受力情况及运动状态无关质量是物体惯性大小的量度2牛顿第三定律(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为FF(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律(二)牛顿第二定律1定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比2公式:F合ma理解要点因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失方向性:a与F合都是矢量,方向严格相同瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力3应用牛顿第二定律解题的一般步骤:(1)确定研究对象;(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;(5)统一单位,计算数值超重与失重问题1超重与失重只是物体在竖直方向上具有加速度时所受支持力不等于重力的情形2要注意飞行器绕地球做圆周运动时在竖直方向上具有向心加速度,处于失重状态例9为了测量某住宅大楼每层的平均高度(层高)及电梯的运行情况,甲、乙两位同学在一楼电梯内用电子体重计及秒表进行了以下实验:质量m50 kg的甲同学站在体重计上,乙同学记录电梯从地面一楼到顶层的过程中,体重计的示数随时间变化的情况,并作出了如图119甲所示的图象已知t0时,电梯静止不动,从电梯内楼层按钮上获知该大楼共19层求:(1)电梯启动和制动时的加速度大小(2)该大楼的层高图119甲【解析】(1)对于启动状态有:F1mgma1 得:a12 m/s2对于制动状态有:mgF3ma2 得:a22 m/s2(2)电梯匀速运动的速度va1t121 m/s2 m/s从图中读得电梯匀速上升的时间t226 s电梯运行的总时间t28 s电梯运行的vt图象如图119乙所示,图119乙所以总位移sv (t2t)2(2628) m54 m层高h3 m 答案(1)2 m/s22 m/s2(2)3 m动量和能量一、基本的物理概念1冲量与功的比较(2)属性2动量与动能的比较(1)定义式(2)属性(3)动量与动能量值间的关系(4)动量和动能都是描述物体状态的量,都有相对性(相对所选择的参考系),都与物体的受力情况无关动量的变化和动能的变化都是过程量,都是针对某段时间而言的二、动量观点的基本物理规律1动量定理的基本形式与表达式:Ip分方向的表达式:Ix合px,Iy合py2动量定理推论:动量的变化率等于物体所受的合外力,即F合3动量守恒定律(1)动量守恒定律的研究对象是一个系统(含两个或两个以上相互作用的物体)(2)动量守恒定律的适用条件标准条件:系统不受外力或系统所受外力之和为零近似条件:系统所受外力之和虽不为零,但比系统的内力小得多(如碰撞问题中的摩擦力、爆炸问题中的重力等外力与相互作用的内力相比小得多),可以忽略不计分量条件:系统所受外力之和虽不为零,但在某个方向上的分量为零,则在该方向上系统总动量的分量保持不变(3)使用动量守恒定律时应注意:速度的瞬时性;动量的矢量性;时间的同一性(4)应用动量守恒定律解决问题的基本思路和方法分析题意,明确研究对象在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体统称为系统对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是作用于系统的外力在受力分析的基础上根据动量守恒定律的条件,判断能否应用动量守恒定律明确所研究的相互作用过程,确定过程的始末状态,即系统内各个物体的初动量和末动量的值或表达式(注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系)确定正方向,建立动量守恒方程求解三、功和能1中学物理中常见的能量动能Ekmv2;重力势能Epmgh;弹性势能E弹kx2;机械能EEkEp;分子势能;分子动能;内能;电势能Eq;电能;磁场能;化学能;光能;原子能(电子的动能和势能之和);原子核能Emc2;引力势能;太阳能;风能(空气的动能);地热、潮汐能2常见力的功和功率的计算:恒力做功WFscos ;重力做功Wmgh;一对滑动摩擦力做的总功Wffs路;电场力做功WqU;功率恒定时牵引力所做的功WPt;恒定压强下的压力所做的功WpV;电流所做的功WUIt;洛伦兹力永不做功;瞬时功率PFvcos_;平均功率Fcos 3中学物理中重要的功能关系能量与物体运动的状态相对应在物体相互作用的过程中,物体的运动状态通常要发生变化,所以物体的能量变化一般要通过做功来实现,这就是常说的“功是能量转化的量度”的物理本质那么,什么功对应着什么能量的转化呢?在高中物理中主要的功能关系有:(1)外力对物体所做的总功等于物体动能的增量,即W总Ek(动能定理)(2)重力(或弹簧的弹力)对物体所做的功等于物体重力势能(或弹性势能)的增量的负值,即W重Ep(或W弹Ep)(3)电场力对电荷所做的功等于电荷电势能的增量的负值,即W电E电(4)除重力(或弹簧的弹力)以外的力对物体所做的功等于物体机械能的增量,即W其他E机(功能原理)(5)当除重力(或弹簧弹力)以外的力对物体所做的功等于零时,则有E机0,即机械能守恒(6)一对滑动摩擦力做功与内能变化的关系是:“摩擦所产生的热”等于滑动摩擦力跟物体间相对路程的乘积,即Qfs相对一对滑动摩擦力所做的功的代数和总为负值,表示除了有机械能在两个物体间转移外,还有一部分机械能转化为内能,这就是“摩擦生热”的实质(7)安培力做功对应着电能与其他形式的能相互转化,即W安E电安培力做正功,对应着电能转化为其他能(如电动机模型);克服安培力做负功,对应着其他能转化为电能(如发电机模型);安培力做功的绝对值等于电能转化的量值(8)分子力对分子所做的功等于分子势能的增量的负值,即W分子力E分子(9)外界对一定质量的气体所做的功W与气体从外界所吸收的热量Q之和等于气体内能的变化,即WQU(10)在电机电路中,电流做功的功率等于电阻发热的功率与输出的机械功率之和(11)在纯电阻电路中,电流做功的功率等于电阻发热的功率(12)在电解槽电路中,电流做功的功率等于电阻发热的功率与转化为化学能的功率之和(13)在光电效应中,光子的能量hWmv02(14)在原子物理中,原子辐射光子的能量hE初E末,原子吸收光子的能量hE末E初(15)核力对核子所做的功等于核能增量的负值,即W核E核,并且mc2E核(16)能量转化和守恒定律对于所有参与相互作用的物体所组成的系统,无论什么力做功,可能每一个物体的能量的数值及形式都发生变化,但系统内所有物体的各种形式能量的总和保持不变4运用能量观点分析、解决问题的基本思路(1)选定研究对象(单个物体或一个系统),弄清物理过程(2)分析受力情况,看有什么力在做功,弄清系统内有多少种形式的能在参与转化(3)仔细分析系统内各种能量的变化情况及变化的数量(4)列方程E减E增或E初E末求解四、弹性碰撞在一光滑水平面上有两个质量分别为m1、m2的刚性小球A和B以初速度v1、v2运动,若它们能发生正碰,碰撞后它们的速度分别为v1和v2v1、v2、v1、v2是以地面为参考系的,将A和B看做系统由碰撞过程中系统动量守恒,有:m1v1m2v2m1v1m2v2由于弹性碰撞中没有机械能损失,故有:m1v12m2v22m1v12m2v22由以上两式可得:v2v1(v2v1)或v1v2(v1v2)碰撞后B相对于A的速度与碰撞前B相对于A的速度大小相等、方向相反;碰撞后A相对于B的速度与碰撞前A相对于B的速度大小相等、方向相反【结论1】对于一维弹性碰撞,若以其中某物体为参考系,则另一物体碰撞前后速度大小不变、方向相反(即以原速率弹回)联立以上各式可解得:v1v2若m1m2,即两个物体的质量相等,则v1v2,v2v1,表示碰后A的速度变为v2,B的速度变为v1【结论2】对于一维弹性碰撞,若两个物体的质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)若A的质量远大于B的质量,则有:v1v1,v22v1v2;若A的质量远小于B的质量,则有:v2v2,v12v2v1【结论3】对于一维弹性碰撞,若其中某物体的质量远大于另一物体的质量,则质量大的物体碰撞前后速度保持不变至于质量小的物体碰后速度如何,可结合结论1和结论2得出圆周运动、航天与星体问题一、圆周运动1描述匀速圆周运动的相关物理量及其关系(1)物理量:线速度v、角速度、周期T、频率f、转速n、向心加速度a等等(2)关系:vr2rf,a2rr42f2r2匀速圆周运动的向心力(1)向心力的来源:向心力是由效果命名的力,它可以由重力、弹力、摩擦力等力来充当,也可以是由这些力的合力或它们的分力来提供,即任何力都可能提供向心力,向心力的作用是只改变线速度的方向,不改变线速度的大小(2)大小:F向mamm2rmr4m2f2r (牛顿第二定律)3圆周运动的临界问题分析圆周运动的临界问题时,一般应从与研究对象相联系的物体(如:绳、杆、轨道等)的力学特征着手(1)如图31所示,绳系小球在竖直平面内做圆周运动及小球沿竖直圆轨道的内侧面做圆周运动过最高点的临界问题(小球只受重力、绳或轨道的弹力)图31由于小球运动到圆轨迹的最高点时,绳或轨道对小球的作用力只能向下,作用力最小为零,所以小球做完整的圆周运动在最高点应有一最小速度vmin当小球刚好能通过最高点时,有:mgm解得:vmin又由机械能守恒定律有:mv下2mv上2mg2R,可得v下所以,小球要能通过最高点,它在最高点时的速度v需要满足的条件是v当v 时,绳对球产生拉力,轨道对球产生压力(2)如图32所示,轻质杆一端的小球绕杆的另一端做圆周运动及小球在竖直放置的圆环内做圆周运动过最高点的临界问题图32分析小球在最高点的受力情况:小球受重力mg、杆或轨道对小球的力F小球在最高点的动力学方程为:mgFm由于小球运动到圆轨迹的最高点时,杆或轨道对小球的作用力可以向下,可以向上,也可以为零;以向下的方向为正方向,设小球在最高点时杆或轨道对它的作用力大小为F,方向向上,速度大小为v,则有:mgFm当v0时,Fmg,方向向上;当0v 时,F随v的增大而减小,方向向上;当v 时,F0;当v 时,F为负值,表示方向向下,且F随v的增大而增大4弯道问题(1)火车的弯道、公路的弯道都向内侧倾斜,若弯道半径为r,车辆通过速度为v0,则弯道的倾角应为:(2)飞机、鸟在空中盘旋时受力与火车以“v0”过弯道相同,故机翼、翅膀的倾角arctan图33(3)骑自行车在水平路面上转弯时,向心力由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论