工程数学-积分变换第四版-高等教育出版社-课后答案.pdf_第1页
工程数学-积分变换第四版-高等教育出版社-课后答案.pdf_第2页
工程数学-积分变换第四版-高等教育出版社-课后答案.pdf_第3页
工程数学-积分变换第四版-高等教育出版社-课后答案.pdf_第4页
工程数学-积分变换第四版-高等教育出版社-课后答案.pdf_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1-11-11-11-1 1 1 1 1试证:若试证:若试证:若试证:若( ( ( ( ) ) ) ) f tf tf tf t 满足满足满足满足 FourierFourierFourierFourier 积分定理中的条件,则有积分定理中的条件,则有积分定理中的条件,则有积分定理中的条件,则有 ( ( ( ( ) ) ) )( ( ( ( ) ) ) )( ( ( ( ) ) ) )dddd 00000000 cossincossincossincossinf tatbtf tatbtf tatbtf tatbt + =+=+=+=+ 其中其中其中其中( ( ( ( ) ) ) )( ( ( ( ) ) ) )( ( ( ( ) ) ) )( ( ( ( ) ) ) )dddd 11111111 cos,sin.cos,sin.cos,sin.cos,sin.afbfafbfafbfafbf + = 分析:由分析:由分析:由分析:由 FourierFourierFourierFourier 积分的复数形式和三角形式都可以证明此题,请读者试积分的复数形式和三角形式都可以证明此题,请读者试积分的复数形式和三角形式都可以证明此题,请读者试积分的复数形式和三角形式都可以证明此题,请读者试 用三角形式证明用三角形式证明用三角形式证明用三角形式证明. . . . 证明:利用证明:利用证明:利用证明:利用 FourierFourierFourierFourier 积分的复数形式,有积分的复数形式,有积分的复数形式,有积分的复数形式,有 ( ( ( ( ) ) ) )( ( ( ( ) ) ) ) jjjj ee dee d 1 1 1 1 2 2 2 2 tttttttt f tff tff tff tf + = = = = ( ( ( ( ) ) ) )( ( ( () ) ) ) j j jde djde d 11111111 cossincossincossincossin 2 2 2 2 t t t t f f f f + = ( ( ( ( ) ) ) )( ( ( ( ) ) ) ) ( ( ( () ) ) )jjdjjd 1 1 1 1 cossincossincossincossin 2 2 2 2 abttabttabttabtt + =+=+=+=+ 由于由于由于由于( ( ( ( ) ) ) )( ( ( () ) ) )( ( ( ( ) ) ) )( ( ( () ) ) ),aabbaabbaabbaabb= = = = 所以所以所以所以 ( ( ( ( ) ) ) )( ( ( ( ) ) ) )( ( ( ( ) ) ) )dddd 11111111 cossincossincossincossin 22222222 f tatbtf tatbtf tatbtf tatbt + =+=+=+=+ ( ( ( ( ) ) ) )( ( ( ( ) ) ) )dddd 00000000 cossincossincossincossinatbtatbtatbtatbt + =+=+=+=+ 2 2 2 2求下列函数的求下列函数的求下列函数的求下列函数的 FourierFourierFourierFourier 积分:积分:积分:积分: 1 1 1 1)( ( ( ( ) ) ) ) 22222222 2 2 2 2 1,11,11,11,1 0,10,10,10,1 tttttttt f tf tf tf t t t t t = = = = ; ; ; ;2)2)2)2)( ( ( ( ) ) ) ) 0,00,00,00,0 ; ; ; ; esin2 ,0esin2 ,0esin2 ,0esin2 ,0 t t t t t t t t f tf tf tf t t tt tt tt t 为连续的偶函数,其为连续的偶函数,其为连续的偶函数,其为连续的偶函数,其 FourierFourierFourierFourier 变换为变换为变换为变换为 j2j2j2j2 1 1 1 1 ( ) ( )( )ed2( )cosd2(1)cosd( ) ( )( )ed2( )cosd2(1)cosd( ) ( )( )ed2( )cosd2(1)cosd( ) ( )( )ed2( )cosd2(1)cosd 00000000 t t t t Ff tf ttf tt ttt tFf tf ttf tt ttt tFf tf ttf tt ttt tFf tf ttf tt ttt t + = F 1 1 1 1 2 2 2 2 233233233233 0 0 0 0 sin2 cos2sinsin4(sincos)sin2 cos2sinsin4(sincos)sin2 cos2sinsin4(sincos)sin2 cos2sinsin4(sincos) 2 2 2 2 tttttttttttttttttttttttt =+=+=+=+= ( ( ( ( 偶 函偶 函偶 函偶 函 数数数数) ) ) ) f f f f( ( ( (t t t t) ) ) )的的的的 FourierFourierFourierFourier 积分为积分为积分为积分为 j 3 11 ( )( )ed( )cosd 02 4(sincos) cosd 0 t f tFFt t + = + = 2)2)2)2)所给函数为连续函数,其所给函数为连续函数,其所给函数为连续函数,其所给函数为连续函数,其 FourierFourierFourierFourier 变换为变换为变换为变换为 ( ( ( ( ) ) ) ) jjjjjjjj ( )( )edesin2 ed( )( )edesin2 ed( )( )edesin2 ed( )( )edesin2 ed 0 0 0 0 tttttttttttt Ff tf ttttFf tf ttttFf tf ttttFf tf tttt + = F 2 j2 j2 j2 j2 j2 j2 j2 j j( 1 2j j)(1 2j j)j( 1 2j j)(1 2j j)j( 1 2j j)(1 2j j)j( 1 2j j)(1 2j j) ee1ee1ee1ee1 eedeedeedeedeedeedeedeed 02j2j 002j2j 002j2j 002j2j 0 tttttttt tttttttttttttttt tttttttt + + + + + = ( 1 2j j)(1 2j j)( 1 2j j)(1 2j j)( 1 2j j)(1 2j j)( 1 2j j)(1 2j j) 0 0 0 0 1ee1ee1ee1ee 2j12jj12jj2j12jj12jj2j12jj12jj2j12jj12jj tttttttt + + + + + =+=+=+=+ + + + + ( ( ( () ) ) ) 2 2 2 2 24242424 252 j252 j252 j252 j j11j11j11j11 21(2)j1(2)j25621(2)j1(2)j25621(2)j1(2)j25621(2)j1(2)j256 =+=+=+=+= + + + + (实部为偶函数(实部为偶函数(实部为偶函数(实部为偶函数, 虚虚虚虚 数为奇函数)数为奇函数)数为奇函数)数为奇函数) f f f f( ( ( (t t t t) ) ) )的的的的 FourierFourierFourierFourier 变换为变换为变换为变换为 ( ( ( ( ) ) ) ) j j j j 1 1 1 1 ( )ed( )ed( )ed( )ed 2 2 2 2 t t t t f tFf tFf tFf tF + = = = = ( ( ( () ) ) ) ( ( ( () ) ) ) 2 2 2 2 24242424 252 j252 j252 j252 j 1 1 1 1 cosjsindcosjsindcosjsindcosjsind 2 2 2 2 256256256256 tttttttt + = + ( ( ( () ) ) )( ( ( () ) ) ) ( ( ( () ) ) ) 22222222 2424242424242424 2 2 2 2 24242424 5cos2sin5sin2cos5cos2sin5sin2cos5cos2sin5sin2cos5cos2sin5sin2cos 11111111 dddddddd 256256256256 256256256256 5cos2sin5cos2sin5cos2sin5cos2sin 2 2 2 2 d d d d 0256025602560256 tttttttttttttttt tttttttt + + =+=+=+=+ + + + = = = = + 这里用到奇偶函数的积分性质这里用到奇偶函数的积分性质这里用到奇偶函数的积分性质这里用到奇偶函数的积分性质. . . . 3 3 3 3)所给函数有间断点所给函数有间断点所给函数有间断点所给函数有间断点-1-1-1-1,0 0 0 0,1 1 1 1 且且且且f f f f( ( ( (- - - -t t t t)=)=)=)= - - - -f f f f( ( ( (t t t t) ) ) )是奇函数是奇函数是奇函数是奇函数,其其其其 FourierFourierFourierFourier 变换为变换为变换为变换为 ( ( ( ( ) ) ) ) j j j j ( )( )ed2j( )sind( )( )ed2j( )sind( )( )ed2j( )sind( )( )ed2j( )sind 0 0 0 0 t t t t Ff tf ttf tt tFf tf ttf tt tFf tf ttf tt tFf tf ttf tt t + = = = = F 1 1 1 12j(cos1)2j(cos1)2j(cos1)2j(cos1) 2j1 sind2j1 sind2j1 sind2j1 sind 0 0 0 0 t tt tt tt t = = = = = (奇函数)(奇函数)(奇函数)(奇函数) f f f f( ( ( (t t t t) ) ) )的的的的 FourierFourierFourierFourier 积分为积分为积分为积分为 ( ( ( ( ) ) ) )( ( ( ( ) ) ) ) j j j j j j j j ( )edsind( )edsind( )edsind( )edsind 0 0 0 0 0 0 0 0 21cos21cos21cos21cos sindsindsindsind 0 0 0 0 t t t t f tFFtf tFFtf tFFtf tFFt t t t t + = = = = + = = = = 1 1 = = 2 2 其中其中其中其中t t t t -1-1-1-1,0 0 0 0,1 1 1 1(在间断点(在间断点(在间断点(在间断点 0 t处,右边处,右边处,右边处,右边f f f f( ( ( (t t t t) ) ) )应以应以应以应以 ( ( ( () ) ) )( ( ( () ) ) ) 00000000 00000000 2 2 2 2 f tf tf tf tf tf tf tf t+ 代替)代替)代替)代替). . . . 3 3 3 3求下列函数的求下列函数的求下列函数的求下列函数的 FourierFourierFourierFourier 变换,并推证下列积分结果:变换,并推证下列积分结果:变换,并推证下列积分结果:变换,并推证下列积分结果: 1 1 1 1)( ( ( ( ) ) ) )e(0),e(0),e(0),e(0), t t t t f tf tf tf t =证明:证明:证明:证明: 22222222 coscoscoscos de;de;de;de; 02020202 t t t tt t t t + = = = = + + + + 2 2 2 2)( )ecos( )ecos( )ecos( )ecos t t t t f ttf ttf ttf tt = = = =, 证明:证明:证明:证明: 2 2 2 2 4 4 4 4 2 2 2 2 cosdecos ;cosdecos ;cosdecos ;cosdecos ; 042042042042 t t t t tttttttt + + + + = = = = + + + + 3 3 3 3) sin ,sin ,sin ,sin , ( )( )( )( ) 0, 0, 0, 0, tttttttt f tf tf tf t t t t t = = = = ,证明:,证明:,证明:,证明: 2 2 2 2 sin ,sin ,sin ,sin , sinsinsinsin sinsinsinsin 2 2 2 2d d d d 01010101 0, 0, 0, 0, tttttttt t t t t t t t t + = = = = 证明:证明:证明:证明:1 1 1 1)函数)函数)函数)函数( ( ( ( ) ) ) )e e e e t t t t f tf tf tf t = = = =为连续的偶函数,其为连续的偶函数,其为连续的偶函数,其为连续的偶函数,其 FourierFourierFourierFourier 变换为变换为变换为变换为 ( ( ( ( ) ) ) )( ( ( ( ) ) ) ) j j j j eed2ecosdeed2ecosdeed2ecosdeed2ecosd 0 0 0 0 t t t ttttttttt Ff ttt tFf ttt tFf ttt tFf ttt t + = F ( ( ( () ) ) ) 2222222222222222 0 0 0 0 ecossinecossinecossinecossin2 2 2 2 2 2 2 2 t t t tt t t t t t t t tttttttt =+=+=+=+ = = = = + = + 再由再由再由再由 FourierFourierFourierFourier 变换得变换得变换得变换得 ( ( ( ( ) ) ) )( ( ( ( ) ) ) ) j j j j 22222222 112112112112 edcosdedcosdedcosdedcosd 2 2 2 2 0 0 0 0 t t t t f tFt tf tFt tf tFt tf tFt t + = + 即即即即 22222222 coscoscoscos dededede 02020202 t t t t t t t t + = = = = + + + + 2 2 2 2)函数)函数)函数)函数( ( ( ( ) ) ) )ecosecosecosecos t t t t f ttf ttf ttf tt = = = =为连续的偶函数,其为连续的偶函数,其为连续的偶函数,其为连续的偶函数,其 FourierFourierFourierFourier 变换为变换为变换为变换为 ( ( ( ( ) ) ) ) jjjjjjjj ( )edecos ed( )edecos ed( )edecos ed( )edecos ed t t t ttttttttt Ff ttttFf ttttFf ttttFf tttt + = jjjjjjjj j j j j eeeeeeee eedeedeedeed 2 2 2 2 tttttttt t t t tt t t t t t t t + + + + ( 1 j j)(1 j j)( 1 j j)(1 j j)( 1 j j)(1 j j)( 1 j j)(1 j j)( 1 j j)(1 j j)( 1 j j)(1 j j)( 1 j j)(1 j j)( 1 j j)(1 j j) 000000001 1 1 1 edededededededededededededededed 200200200200 tttttttttttttttt tttttttttttttttt + + + + + + + + + + + + + + + + + =+=+=+=+ (1 j j)(1 j j)( 1 j j)(1 j j)(1 j j)(1 j j)( 1 j j)(1 j j)(1 j j)(1 j j)( 1 j j)(1 j j)(1 j j)(1 j j)( 1 j j)(1 j j) 000000001eeee1eeee1eeee1eeee 2 1jj1jj1jj01jj02 1jj1jj1jj01jj02 1jj1jj1jj01jj02 1jj1jj1jj01jj0 tttttttttttttttt + + + + + + + + + + + + + + + + + + + + + =+=+=+=+ + + + + + + + + + + + + 2 2 2 2 4 4 4 4 111112111112111112111112 2 1jj1jj1jj1jj42 1jj1jj1jj1jj42 1jj1jj1jj1jj42 1jj1jj1jj1jj4 + =+=+=+=+= + + + + + + + + + + + + + 再由再由再由再由 FourierFourierFourierFourier 变换公式得变换公式得变换公式得变换公式得 ( ( ( ( ) ) ) )( ( ( ( ) ) ) ) 2 2 2 2 j j j j 4 4 4 4 1112111211121112 ( )edcosdcosd( )edcosdcosd( )edcosdcosd( )edcosdcosd 2 2 2 2 0 0 0 0 04040404 t t t t f tFFttf tFFttf tFFttf tFFtt + + + + = + 即即即即 2 2 2 2 4 4 4 4 2 2 2 2 cosdecoscosdecoscosdecoscosdecos 042042042042 t t t t tttttttt + + + + = = = = + + + + 3 3 3 3)给出的函数为奇函数,其)给出的函数为奇函数,其)给出的函数为奇函数,其)给出的函数为奇函数,其 FourierFourierFourierFourier 变换为变换为变换为变换为 ( ( ( ( ) ) ) )( ( ( ( ) ) ) )( ( ( () ) ) ) jjjjjjjj edsin edsincosjsindedsin edsincosjsindedsin edsincosjsindedsin edsincosjsind tttttttt Ff ttttttttFf ttttttttFf ttttttttFf tttttttt + = ( ( ( () ) ) )( ( ( () ) ) ) 00000000 2jsin sindjcos1cos1d2jsin sindjcos1cos1d2jsin sindjcos1cos1d2jsin sindjcos1cos1dtt tttttt tttttt tttttt tttt= =+= =+= =+= =+ ( ( ( () ) ) )( ( ( () ) ) ) 2 2 2 2 sin1sin1sin1sin1 sin1sin1sin1sin1 sinsin2jsinsinsin2jsinsinsin2jsinsinsin2jsin jjjjjjjj 1010111101011110101111010111 tttttttt + = + ( ( ( ( ) ) ) )( ( ( ( ) ) ) )( ( ( () ) ) ) -1j-1j-1j-1j 2 2 2 2 112jsin112jsin112jsin112jsin edcosjsindedcosjsindedcosjsindedcosjsind 2 2 2 2 2 2 2 2 1 1 1 1 t t t t FFttFFttFFttFFtt + = =+=+=+=+ F 2 2 2 2 0 0 0 0 sin ,sin ,sin ,sin , 2sin2sin2sin2sin sinsinsinsin d d d d 1 1 1 1 0, 0, 0, 0, t tt tt tt t t t t t t t t t + = = = = = 故故故故 2 2 2 2 0 0 0 0 sin ,sin ,sin ,sin , sinsinsinsin sinsinsinsin 2 2 2 2d d d d 1 1 1 1 0, 0, 0, 0, t tt tt tt t t t t t t t t t + = = = = 4.4.4.4.求函数求函数求函数求函数( ( ( ( ) ) ) )( ( ( () ) ) )e0,0e0,0e0,0e0,0 t t t t f ttf ttf ttf tt =的的的的 FourierFourierFourierFourier 正弦积分表达式和正弦积分表达式和正弦积分表达式和正弦积分表达式和 FourierFourierFourierFourier 余弦积余弦积余弦积余弦积 分表达式分表达式分表达式分表达式. . . . 解:根据解:根据解:根据解:根据 FourierFourierFourierFourier 正弦积分公式,并用分部积分法,有正弦积分公式,并用分部积分法,有正弦积分公式,并用分部积分法,有正弦积分公式,并用分部积分法,有 ( ( ( ( ) ) ) )( ( ( ( ) ) ) ) 00000000 2 2 2 2 sindsindsindsindsindsindsindsind f f f ft t t ttftftftf + = = = = 00000000 2 2 2 2 sindsindsindsindsindsindsindsind e e e e t t t t t t t t + = = = = ( ( ( () ) ) ) 22222222 0 0 0 0 sincossincossincossincos2 2 2 2 sindsindsindsind 0 0 0 0 e e e et t t t t t t t + + + + + = = = = + + + + 22222222 0 0 0 0 2 2 2 2 sind .sind .sind .sind . t t t t + = = = = + + + + 根据根据根据根据 FourierFourierFourierFourier 余弦积分公式,用分部积分法,有余弦积分公式,用分部积分法,有余弦积分公式,用分部积分法,有余弦积分公式,用分部积分法,有 ( ( ( ( ) ) ) )( ( ( ( ) ) ) ) 00000000 2 2 2 2 cosdcosdcosdcosdcosdcosdcosdcosd f f f ft t t ttftftftf + = = = = 00000000 2 2 2 2 cosdcosdcosdcosdcosdcosdcosdcosd e e e e t t t t t t t t + = = = = ( ( ( () ) ) ) 22222222 0 0 0 0 sincossincossincossincos2 2 2 2 cosdcosdcosdcosd 0 0 0 0 e e e et t t t t t t t + + + + + = = = = + + + + 22222222 0 0 0 0 2 2 2 2 cosd .cosd .cosd .cosd . t t t t + = = = = + + + + 1-21-21-21-2 1 1 1 1求矩形脉冲函数求矩形脉冲函数求矩形脉冲函数求矩形脉冲函数 , 0, 0, 0, 0 ( )( )( )( ) 0, 0, 0, 0, AtAtAtAt f tf tf tf t = = = = 其其他他 的的的的 FourierFourierFourierFourier 变换变换变换变换. . . . 解:解:解:解: ( ( ( () ) ) ) j j j j j j j j jjjjjjjj 0 0 0 0 1e1e1e1e e e e e ( )( )( )eded( )( )( )eded( )( )( )eded( )( )( )eded 0jj0jj0jj0jj t t t t t t t t tttttttt A A A A Ff tf ttAtAFf tf ttAtAFf tf ttAtAFf tf ttAtA + = F 2.2.2.2.设设设设( ( ( ( ) ) ) )F F F F 是函数是函数是函数是函数( ( ( ( ) ) ) )f tf tf tf t的的的的 FourierFourierFourierFourier 变换变换变换变换,证明证明证明证明( ( ( ( ) ) ) )F F F F 与与与与( ( ( ( ) ) ) )f tf tf tf t有相同的奇偶有相同的奇偶有相同的奇偶有相同的奇偶 性性性性. . . . 证明:证明:证明:证明:( ( ( ( ) ) ) )F F F F 与与与与( ( ( ( ) ) ) )f tf tf tf t是一个是一个是一个是一个 FourierFourierFourierFourier 变换对,即变换对,即变换对,即变换对,即 ( ( ( ( ) ) ) )( ( ( ( ) ) ) ) j j j j edededed t t t t Ff ttFf ttFf ttFf tt + = = = = ,( ( ( ( ) ) ) )( ( ( ( ) ) ) ) j j j j 1 1 1 1 edededed 2 2 2 2 t t t t f tFf tFf tFf tF + = = = = 如果如果如果如果( ( ( ( ) ) ) )F F F F 为奇函数,即为奇函数,即为奇函数,即为奇函数,即( ( ( () ) ) )( ( ( ( ) ) ) )FFFFFFFF= = = = ,则,则,则,则 ( ( ( () ) ) )( ( ( ( ) ) ) ) ( ( ( () ) ) ) ( ( ( () ) ) )( ( ( () ) ) ) ( ( ( () ) ) )jjjjjjjj 11111111 edededededededed 2 2 2 2 2 2 2 2 tttttttt ftFFftFFftFFftFF + = (令(令(令(令u u u u =)( ( ( ( ) ) ) ) j j j j 1 1 1 1 e de de de d 2 2 2 2 utututut F uuF uuF uuF uu = = = = + (换积分变量(换积分变量(换积分变量(换积分变量u为为为为)( ( ( ( ) ) ) )( ( ( ( ) ) ) ) j j j j 1 1 1 1 edededed 2 2 2 2 t t t t Ff tFf tFf tFf t + = = = = = = = = 所以所以所以所以( ( ( ( ) ) ) )f tf tf tf t亦为奇函数亦为奇函数亦为奇函数亦为奇函数. . . . 如果如果如果如果( ( ( ( ) ) ) )f tf tf tf t为奇函数,即为奇函数,即为奇函数,即为奇函数,即( ( ( () ) ) )( ( ( ( ) ) ) )ftf tftf tftf tftf t= = = = ,则,则,则,则 ( ( ( () ) ) )( ( ( ( ) ) ) ) ( ( ( () ) ) ) ( ( ( () ) ) ) ( ( ( () ) ) )jjjjjjjj edededededededed tttttttt Ff ttfttFf ttfttFf ttfttFf ttftt + = (令(令(令(令tutututu = = = =)( ( ( ( ) ) ) ) j j j j edededed u u u u f uuf uuf uuf uu = = = = + (换积分变量(换积分变量(换积分变量(换积分变量u为为为为t)( ( ( ( ) ) ) )( ( ( ( ) ) ) ) j j j j edededed t t t t f ttFf ttFf ttFf ttF + = = = = = = = = 所以所以所以所以( ( ( ( ) ) ) )F F F F 亦为奇函数亦为奇函数亦为奇函数亦为奇函数. . . . 同理可证同理可证同理可证同理可证( ( ( ( ) ) ) )f tf tf tf t与与与与( ( ( ( ) ) ) )F F F F 同为偶函数同为偶函数同为偶函数同为偶函数. . . . 4 4 4 4求函数求函数求函数求函数( ( ( ( ) ) ) )( ( ( () ) ) )e0e0e0e0 t t t t f ttf ttf ttf tt =的的的的 FourierFourierFourierFourier 正弦变换,并推证正弦变换,并推证正弦变换,并推证正弦变换,并推证 (

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论