系统光学参量允许偏差计算.docx_第1页
系统光学参量允许偏差计算.docx_第2页
系统光学参量允许偏差计算.docx_第3页
系统光学参量允许偏差计算.docx_第4页
系统光学参量允许偏差计算.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

系统光学参量允许偏差计算(Zemax公差计算实例)*一 公差分配思路原准备用ODP841进行公差分配计算,但该软件是用于几何传函的计算,对小象差系统计算的结果比Zemax中的MTFT好的多,这是因为没考虑衍射效应对象差的干扰。我们设计的系统鉴别率是很高的。因此用ODP841计算偏差很大。故采用Zemax计算。首先介召公差计算的总体思路:在光学设计中给所有工艺允许的总公差是: 使最差情况下的传函由于工艺因素的总下降量不大于0.15 lp/mm(下降后的传函仍有MTF=0.15,以便CCD仍能分辩它对应的空间频率),对于本系统就是在F=1.23光圈、1H,0.7H口径下允许鉴别率总下降量不大于0.15 lp/mm。公差分配的环节有:半径、厚度1(透镜厚度)、厚度2(透镜气隙)、玻璃折射率、玻璃色散、中心偏1(加工偏心)、中心偏2(装配偏心)、余量上面的公差余量是为了在实际的工艺实施中,由于工艺原因必需放宽公差时,总公差允许量不致于超。在计算公差时,先按经验以工艺上最宽松的条件给出各结构参量的公差预定值,这样作是为了先考核最差情况对总公差的影响。当总公差不超时,也不能以此作为公差分配的最终结果,因为在工艺允许的条件下,应尽量提高成象质量,因此应减少对总公差影响大的诸结构公差,这样才能最有效的提高成象质量。二公差分配1 思路对本样例镜头,用Zemax公差计算功能时应遵循如下原则:(1) 因为F=28口径均比F=1.2口径的传函高很多,因此应以F=1.2口径传函为准考核传函变化量。(2) 在F=1.2口径的传函中,应要求0W,0.7W的传函,而0W传函比0.7W传函高很多,因此应以0.7W视场传函为准考核传函变化量所允许的半径公差。(3) 在计算传函时,应以MTF=0.3为基准考核传函的空间频率。(4) 正态分布的蒙特卡罗数应取20以上,我们取50(此数越大,得到的公差计算结果的可信度越高,但计算量就越大)。(5) 用传函计算公差时,各结构变量公差预定值的给定,可参考“各结构公差计算时预定公差的给定原则”给出。(6) 为了加速公差计算,应以光学设计中有象质要求的各种情况下,传函最低的的情况,计算公差的允许值。各结构公差计算时预定公差的给定原则.1 TFRN(光圈公差)预定公差的给定这个量是给各面半径加公的允许偏差值,先统一给道圈,计算出总偏差再调整。.2 TTHI(厚度公差) 预定公差的给定这个量给定各面位置的绝对偏差允许值,对于变焦系统,由于有变焦曲线的严格限制,因此对各透镜面位置的绝对值应进行控制。对本系统,各面只有相对位置的要求,没必要限定绝对位置,因此只需给出:,;,; . 的面要求就可以了。现各厚度加工的允许偏差预定值统一给.05 mm。.3 TEDX,TEDY(零件允许平行偏心公差) 预定公差的给定这是光学零件与机械零件的配合公差中的偏心(平行)允许公差,给出0.05mm偏心允许预定值。.4 TETX,TETY(零件允许倾斜偏心公差) 预定公差的给定这是光学零件与机械零件的配合公差中的偏心(倾斜)允许公差,给出6=0.1偏心允许预定值。该公差实际上是限定了透镜隔圈端面垂直度的允许偏差。2.5 TSDX,TSDY(光学零件表面允许平行偏心公差) 预定公差的给定这是光学零件表面公差中的偏心(平行)允许公差,给出0.05mm偏心允许预定值。2.6 TSTX,TSTY(零件允许倾斜偏心公差) 预定公差的给定这是光学零件表面公差中的偏心(表面倾斜)允许公差给该量公差预定值为0.05mm。在Zemax公差计算输入文件中,单位确是度。那么就用计算式:Q=arctg(0.05/R) 将角度值求出(度为量刚)。注:TSDX,TSDY,TSTX,TSTY是透镜定心膜边时用以控制表面倾斜和平行偏位的。但在工序完公后确要通过零件的透过偏心来验收,两者如何统一呢?在上图中:在车边工艺中,第一面是作为基准的,因此上图中第一面既无偏心,也无倾斜。第二面C21是表面偏心公差,C22是表面倾斜公差。则同向影响总偏心C2=C21+C22,由相似三角形有:这就是由工艺上控制公差(控制C21,C22),向产品验收公差的转换计算式。在推导上算式时,FR1是在假定镜很薄时得到的,如果透镜较厚,可以在AUTOCAD中作图求出。我们给此类公差时,是以工艺控制公差的方式给出的,故在此不进行转换计算。2.7 TIRR(球差的一半与象散的一半表示的表面不规则度,单位是光圈单位)预定公差的给定这是光圈的局部偏差的允许值,用光圈允许的局部偏差N表示,预定值给0.5。2.8 TIND(d光折射率允许偏差) 预定公差的给定1 有关表格由“光学仪器设计手册”上册355页有表:技 术 指 标物 镜目 镜分划板棱 镜不在光路中的零件高精度中精度一般精度2W502W50Nd1B2C3D3C3D3D3D3D(NF-NC)1B2C3D3C3D3D3D3D均均性23444435双折射3A3333324光吸收系数44334435条纹度1C1C1C1B1C1C1A2C气泡度3C3C4C2B3C1C3C8E设计的光学系统属于中等精度类,这里只计算Nd,(NF-NC)对传函的影响。先按低精度给,如果对传函影响过大,则给到高精度再计算对传函影响量。为了查出Nd,(NF-NC) 的级别与类别的具体要求,可由“光学仪器设计手册”上册409页有表:类 别允许差值级 别同批毛胚中的最大差值折射率中部色散折射率中部色散1A2B3CD折射率在所定类别的允许差值之内中部色散在所定类别的允许差值之内说明:在象质要求很高(如400万象素,或平行光管无镜,高倍测量显微物经)的镜头中,常通过选玻璃进行配对装配来减小玻离折射率和色散偏差对系统成象质量的影响,这就要求按玻璃炉号进行装配。此时对玻璃的级别就应有要求。我们的系统是中等精度的镜头,不存在按炉号选玻璃配对装配的问题,即可不考率玻璃的级别。2 d光折射率的偏差预定值的给的定先按3类给定,即d光折射率的偏差预定值为:0.001 。2.9 TABB(阿贝常数允许偏差) 预定公差的给定由上玻璃类别中知道给定的是中部色散偏差,而它与阿贝数偏差关系见下式:阿贝数的偏差必需由玻璃类别的中部色散允许偏差通过上式转换才能得到,对本产品,中部色散偏差取3类,即d(NF-NC)=0.0001,这样再知道玻璃牌号,查出阿贝数,就可将中部色散偏差传成阿贝数的偏差。ZEMAX的基本像差控制与优化公安部第一研究所 许正光ZEMAX已经成为光学设计人员最常用的工具软件了。光学设计中,描述和控制一个光学系统的初级像差结构,通常使用轴上球差、轴向色差、彗差、场曲、畸变、垂轴色差、像散等像差参数。当我们企图更为详细的描述和控制轴外指定视场、指定光束的像差结构时,常常会使用轴外宽光束球差、彗差和细光束场曲等三个像差参数。然而,ZEMAX并不能像SOD88那样直接引用相对应的像差操作数来指定像差目标大小,更没有描述高级像差数的像差操作数,这些通常都需要设计者自行分析和定义。描述和控制系统光束结构的方法因习惯而有一定的差异,由于某些像差变量之间有某种相关性,而设置的优化权重又可以不同,因此常常都能够达到相同的效果,只是所计算的数学步骤不同而已。到底选择多少个参数来描述一个系统,虽无统一规定,但是还是要因系统像差特性不同而区别选择。经验表明,最少最准确的参数描述量,能够尽可能的提高优化的效率,并且减少掉入效果较差的局部优化的次数。经验丰富的工程师,轻车熟路,在这个环节上少走了很多的弯路,从而其设计效率和设计出来的产品品质要比通常的设计人员有些得多,成功率高的多。笔者撰写本文的目的就是企图浅显的探讨光学设计中,ZEMAX中光学结构的描述方法以及权重选择的问题。这些都是笔者在设计当中积累的经验,可能这个文章的论断会由于经验的多寡有一定的局限性,所以希望读者当作参考,不要照搬。一 基本像差描述和控制1、 轴上球差LONA 和 SPHA LONA表示的是轴上物点指定波长,指定光束尺寸(光线对)的轴上成像交点到近轴焦平面之间轴向距离。这个定义和我们定义的轴向球差相同。光瞳尺寸(光束尺寸)在01之间,那么将追迹实际的光束汇交点计算轴向球差。SPHA常用于指定面产生的像差数值。若不指定特殊面(取值为0),则计算所有面产生球差总和。注意这个总合不是像差计算公式中的经过各面逐个放大之后的加权和,而是代数和(有待读者进一步验证)。经验:当选择LONA控制不住球差时,同时加入SPHA操作数,设置合理的权重,可以将轴向球差进一步改善。2、 轴向色差AXCL定义为两个指定波长的近轴焦平面轴向距离。若光瞳尺寸(光束尺寸)定义为0,那么使用近轴焦平面进行色差计算,定义不为0,则使用实际的光线与轴交点位置进行色差计算。3、 垂轴色差(倍率色差)在ZEMAX中没有直接定义垂轴色差的操作数,但是从垂轴色差的定义可以知道,它是指某视场、某指定光束尺寸的、两指定波长光束在像面上所成的理想像的垂向距离差。在ZEMAX中有REAY(wav,Hy,Py)操作数。其定义为指定波长、指定视场、指定光束尺寸光在理想像面上的实际高度。那么在同一视场选择两个不同波长的光束,其操作数数值之差就表明了理想像面上的垂轴色差大小。Oprand #1 REAY(wav=1,Hy=a,Py=b);Oprand #2 REAY(wav,Hy,Py);DIFF(oprand #1,oprand #2);DIFF操作数指两个操作数结果的差值。4、 彗差彗差描述的是某视场、某尺寸的光线对对主光线的偏离情况,即描述光束失对称的情况。光线对彗差与视场和孔径均有关系,是两者的函数,因此全面描述系统的彗差情况需要选择若干个不同视场和不同孔径。在ZEMAX中提供了一个操作数TRAY。TRAY定义为在像平面上,光线与像面交点到主光线的垂轴距离。首先定义一个光线对:oprand #1 TRAY(wav=2,Hy=a,Py= b);oprand #2 TRAY(wav=2,Hy=a,Py= -b);SUMM(oprand #1,oprand #2)其中SUMM描述的是上述两个操作数的代数和,表征彗差的大小。虽然这个定义和彗差的定义有一定的区别(光线对交点到主光线上细光束交点之间的垂向距离),但是本质上是一样的。这也说明了在Ray图上将某波长曲线首尾两端连线起来,其连线和纵轴的交点大小可以表征彗差大小是同一个道理。5、 细光束场曲FCGS和FCGT 场曲定义为轴外细光束交点和焦平面之间的距离。细光束FCGS和FCGT可以用来描述人以视场、任意波长的弧矢和子午场曲数值。对于非对称系统也能够适用。给出的操作数不能够定义宽光束的场曲。6、 像散ASTI 和(FCGT FCGS)像散定义为子午细光束场曲和弧矢细光束场曲之差。可以使用ZEMAX提供的操作数ASTI进行描述也可以使用(FCGT FCGS)进行描述。ASTI可以用来计算指定镜面上的像散贡献量,若指定面为0,那么计算两位各面的像散贡献量代数和。三级像散从seidal系数中求得。而DIFF(FCGT,FCGS )也能够计算出指定视场、波长的像散值。在很多情况下,同时采用两种方式进行像散控制,能够取得更好优化控制效果。7、 畸变控制DIMX 和DISG DIMX定义了某视场下畸变的上限,而DISG指定了该视场下畸变的目标值。由于畸变一般不影响像质的清晰度,因此一般不做严格的矫正,通常的系统只需要在一定范围即可。二 其它常用于控制像差的操作数很多时候,我们将以上七种基本像差用于像差控制中仍旧会遇到一些困难,那么在一开始或者操作进行当中会需要增加一些操作数,以对整个像质空间进行控制和描述。第一类需要的操作数是:镜面的几何形状,从工艺上我们必须保证镜面的最小曲率半径适合生产,并且在尽可能的情况下选择较大的曲率半径,因为能否加工的出来、加工误差的影响率、产生的高级像差等等因素,都有制约作用,因此镜面曲率半径是我们要控制的参数,尤其是小光学系统的某些镜面。有效的控制也防止ZEMAX程序走火入魔。这类操作书还有:镜面边缘最小厚度控制,空气间距控制。当然,如果一个镜面被矫正过程计算成了一个薄薄的玻璃泡,它的加工是困难的。无必要的无光焦度玻璃片的出现也要引起我们的注意:我们是否用它来仅仅校正场曲。第二类需要提到的操作数:镜面入射和出射光线的入射角控制,每一个镜组能够承受的相对孔径和偏折角是有限度的,大的入射高度和角度以及出射角度都是我们设计当中要避免的,有的时候在校正过程中需要加入这样的操作数RAID/OPLT/RAED对光线进行控制。不加控制的光线,将可能因为某个面上的入射角或者高度太大而产生高级像差,而以后的优化工作陷入为了平衡这个高级像差而努力。很遗憾的,但多数情况下,ZEMAX又走火入魔了。通常的系统,设计初始结构的时候,高级像差产生位置,如何产生的都是我们要考虑的。对于特殊光学系统例如广角、大相对孔径系统尤其如此。第三类操作数:有些时候,将MTF参数,光斑尺寸作为一个操作数加入优化序列中也能够起到一定的作用,当然我们不是很常用。然而,事情总是相对的。ZEMAX提供的优化计算方法基于最小二乘法,其对于我们的优化变量并没有严格的控制,实际上往往许多的变量是一定程度的相关的。相关的多少还与权重有关。我们总是尽可能的不把矛盾的相关量引入最小二乘法中,这样效率会更高些。三 关于操作数权重 操作数全重的作用,笼统地说,可以起到引导优化方向、控制操

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论