浙江省2020版高考数学专题10圆锥曲线与方程10.1椭圆及其性质检测.docx_第1页
浙江省2020版高考数学专题10圆锥曲线与方程10.1椭圆及其性质检测.docx_第2页
浙江省2020版高考数学专题10圆锥曲线与方程10.1椭圆及其性质检测.docx_第3页
浙江省2020版高考数学专题10圆锥曲线与方程10.1椭圆及其性质检测.docx_第4页
浙江省2020版高考数学专题10圆锥曲线与方程10.1椭圆及其性质检测.docx_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

10.1椭圆及其性质【真题典例】挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点椭圆的定义和标准方程1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程.2018浙江,17椭圆的标准方程向量、最值2016浙江,7椭圆的标准方程双曲线的标准方程、离心率2015浙江,19椭圆的定义和标准方程直线与椭圆的位置关系、最值、范围椭圆的几何性质1.掌握椭圆的简单几何性质.2.理解数形结合的数学思想.2017浙江,2椭圆的离心率2016浙江,7,19椭圆的离心率双曲线的离心率、圆、直线与椭圆的位置关系2015浙江,19,文15椭圆的离心率直线与椭圆的位置关系分析解读1.椭圆是圆锥曲线中最重要的内容,是高考命题的热点.2.考查椭圆及其标准方程,椭圆的简单几何性质.3.考查把几何条件转化为代数形式的能力.4.预计2020年高考中,椭圆的考查必不可少,考查仍然集中在椭圆及其标准方程,椭圆的简单几何性质,以及与椭圆有关的综合问题上.破考点【考点集训】考点一椭圆的定义和标准方程1.(2018浙江镇海中学阶段性测试,21)已知椭圆G:x2a2+y2b2=1(ab0)的离心率为63,右焦点为(22,0).斜率为1的直线l与椭圆G交于A,B两点,以AB为底作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求PAB的面积.解析(1)由已知得c=22,=63,解得a=23.又b2=a2-c2=4,所以椭圆G的方程为x212+y24=1.(2)设直线l的方程为y=x+m.由y=x+m,x212+y24=1,得4x2+6mx+3m2-12=0.设A、B的坐标分别为(x1,y1),(x2,y2)(x1b0)的离心率为63,且经过点(3,1).(1)求椭圆的标准方程;(2)过点P(6,0)的直线l交椭圆于A,B两点,Q是x轴上的点,若ABQ是以AB为斜边的等腰直角三角形,求直线l的方程.解析(1)由e=63a2=3b2,设椭圆方程为x23b2+y2b2=1,则3b2+1b2=1,所以b2=4,所以椭圆的标准方程为x212+y24=1.(2)设AB的中点坐标为(x0,y0),A(x1,y1),B(x2,y2),l:x=ty+6,则由得(t2+3)y2+12ty+24=0,AB的中垂线方程为y+6tt2+3=-tx-18t2+3,所以Q12t2+3,0,点Q12t2+3,0到直线l的距离为6t2+1t2+3.|AB|=431+t2t2-6t2+3,所以6=23t2-6,解得t2=9,所以t=3.因此直线l的方程为x3y-6=0.考点二椭圆的几何性质1.(2018浙江镇海中学期中,21)已知椭圆C:x2a2+y2b2=1(ab0)的四个顶点组成的四边形的面积为22,且经过点1,22.(1)求椭圆C的方程;(2)若椭圆C的下顶点为P,如图所示,点M为直线x=2上的一个动点,过椭圆C的右焦点F的直线l垂直于OM,且与椭圆C交于A,B两点,与OM交于点N,四边形AMBO和ONP的面积分别为S1,S2.求S1S2的最大值.解析(1)因为1,22在椭圆C上,所以1a2+12b2=1,又因为椭圆的四个顶点组成的四边形的面积为22,所以2a2b=22,即ab=2,解得a2=2,b2=1,所以椭圆C的方程为x22+y2=1.(2)由(1)可知F(1,0),设M(2,t),A(x1,y1),B(x2,y2),则当t0时,OM:y=x,所以kAB=-,直线AB的方程为y=- (x-1),即2x+ty-2=0(t0),由y=-2t(x-1),x2+2y2-2=0得(8+t2)x2-16x+8-2t2=0,则=(-16)2-4(8+t2)(8-2t2)=8(t4+4t2)0,x1+x2=168+t2,x1x2=8-2t28+t2,AB=1+k2螖8+t2=1+4t222tt2+48+t2=22(t2+4)8+t2,又OM=t2+4,所以S1=OMAB=12t2+422(t2+4)8+t2=2(t2+4)t2+48+t2,由y=-2t(x-1),y=t2x,得xN=4t2+4,所以S2=14t2+4=2t2+4,所以S1S2=2(t2+4)t2+48+t22t2+4=22t2+48+t2=22t2+4+4t2+4b0)的离心率为32,点M(-2,1)是椭圆内一点,过点M作两条斜率存在且互相垂直的动直线l1,l2,设l1与椭圆C相交于点A,B,l2与椭圆C相交于点D,E.当M恰好为线段AB的中点时,|AB|=10.(1)求椭圆C的方程;(2)求的最小值.解析(1)由题意得a2=4b2,即椭圆C:x24b2+y2b2=1,设A(x1,y1),B(x2,y2),D(x3,y3),E(x4,y4).由x12+4y12=4b2,x22+4y22=4b2作差得,(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0.又当M(-2,1)为线段AB的中点时,x1+x2=-4,y1+y2=2,AB的斜率k=y1-y2x1-x2=.由x24b2+y2b2=1,y=12x+2消去y得,x2+4x+8-2b2=0.则|AB|=1+k2|x1-x2|=1+1416-4(8-2b2)=10.解得b2=3,于是椭圆C的方程为x212+y23=1.(2)设直线AB:y=k(x+2)+1,由x212+y23=1,y=k(x+2)+1消去y得,(1+4k2)x2+8k(2k+1)x+4(2k+1)2-12=0.于是x1+x2=-8k(2k+1)1+4k2,x1x2=4(2k+1)2-121+4k2.=(+)(+)=+=(-2-x1,1-y1)(2+x2,y2-1)+(-2-x4,1-y4)(2+x3,y3-1).(-2-x1,1-y1)(2+x2,y2-1)=-(1+k2)(2+x1)(2+x2)=-(1+k2)4+2(x1+x2)+x1x2=4(1+k2)1+4k2.同理可得(-2-x4,1-y4)(2+x3,y3-1)=4(1+k2)4+k2.=4(1+k2)11+4k2+14+k2=20(1+k2)2(1+4k2)(4+k2)20(1+k2)21+4k2+4+k222=165,当k=1时取等号.综上,的最小值为165.炼技法【方法集训】方法求椭圆离心率(范围)的常用方法1.(2018浙江宁波高三上学期期末,4)已知焦点在y轴上的椭圆x24+y2m=1的离心率为,则实数m等于() A.3B.165C.5D.163答案D2.(2018浙江镇海中学5月模拟,8)设椭圆C:x2a2+y2b2=1(ab0) 的右焦点为F,椭圆C上的两点A,B关于原点对称,且满足=0,|FB|FA|2|FB|,则椭圆C的离心率的取值范围是()A.22,53B.53,1C.22,3-1D.3-1,1)答案A过专题【五年高考】A组自主命题浙江卷题组考点一椭圆的定义和标准方程(2018浙江,17,4分)已知点P(0,1),椭圆x24+y2=m(m1)上两点A,B满足=2,则当m=时,点B横坐标的绝对值最大.答案5考点二椭圆的几何性质1.(2017浙江,2,4分)椭圆x29+y24=1的离心率是() A.133B.53C.D.答案B2.(2016浙江,19,15分)如图,设椭圆x2a2+y2=1(a1).(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.解析(1)设直线y=kx+1被椭圆截得的线段为AP,由y=kx+1,x2a2+y2=1得(1+a2k2)x2+2a2kx=0,故x1=0,x2=-2a2k1+a2k2.因此|AP|=1+k2|x1-x2|=2a2|k|1+a2k21+k2.(2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|.记直线AP,AQ的斜率分别为k1,k2,且k1,k20,k1k2.由(1)知,|AP|=2a2|k1|1+k121+a2k12,|AQ|=2a2|k2|1+k221+a2k22,故2a2|k1|1+k121+a2k12=2a2|k2|1+k221+a2k22,所以(k12-k22)1+k12+k22+a2(2-a2)k12k22=0.由k1k2,k1,k20得1+k12+k22+a2(2-a2)k12k22=0,因此1k12+11k22+1=1+a2(a2-2),因为式关于k1,k2的方程有解的充要条件是1+a2(a2-2)1,所以a2.因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1a2,由e=a2-1a得,所求离心率的取值范围为00,将AB中点M2mbm2+2,m2bm2+2代入直线方程y=mx+,解得b=-m2+22m2.由得m63.(2)令t=1m-62,00,62,则|AB|=t2+1-2t4+2t2+32t2+12,且O到直线AB的距离为d=t2+12t2+1.设AOB的面积为S(t),所以S(t)= |AB|d=12-2t2-122+222.当且仅当t2=时,等号成立.故AOB面积的最大值为22.B组统一命题、省(区、市)卷题组考点一椭圆的定义和标准方程1.(2014辽宁,15,5分)已知椭圆C:x29+y24=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|+|BN|=.答案122.(2018天津文,19,14分)设椭圆x2a2+y2b2=1(ab0)的右顶点为A,上顶点为B.已知椭圆的离心率为53,|AB|=13.(1)求椭圆的方程;(2)设直线l:y=kx(kx10,点Q的坐标为(-x1,-y1).由BPM的面积是BPQ面积的2倍,可得|PM|=2|PQ|,从而x2-x1=2x1-(-x1),即x2=5x1.易知直线AB的方程为2x+3y=6,由方程组2x+3y=6,y=kx,消去y,可得x2=63k+2.由方程组x29+y24=1,y=kx,消去y,可得x1=69k2+4.由x2=5x1,可得9k2+4=5(3k+2),两边平方,整理得18k2+25k+8=0,解得k=-或k=-.当k=-时,x2=-9b0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.解析(1)由题意,得=22且c+a2c=3,解得a=2,c=1,则b=1,所以椭圆的标准方程为x22+y2=1.(2)当ABx轴时,AB=2,又CP=3,不合题意.当AB与x轴不垂直时,设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),将AB的方程代入椭圆方程,得(1+2k2)x2-4k2x+2(k2-1)=0,则x1,2=2k2卤2(1+k2)1+2k2,C的坐标为2k21+2k2,-k1+2k2,且AB=(x2-x1)2+(y2-y1)2=(1+k2)(x2-x1)2=22(1+k2)1+2k2.若k=0,则线段AB的垂直平分线为y轴,与左准线平行,不合题意.从而k0,故直线PC的方程为y+k1+2k2=-1kx-2k21+2k2,则P点的坐标为-2,5k2+2k(1+2k2),从而PC=2(3k2+1)1+k2|k|(1+2k2).因为PC=2AB,所以2(3k2+1)1+k2|k|(1+2k2)=42(1+k2)1+2k2,解得k=1.此时直线AB方程为y=x-1或y=-x+1.评析本题在考查椭圆基本性质与标准方程的同时,着重考查直线与圆锥曲线的位置关系和方程思想.4.(2015安徽,20,13分)设椭圆E的方程为x2a2+y2b2=1(ab0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为510.(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.解析(1)由题设条件知,点M的坐标为23a,13b,又kOM=510,从而b2a=510.进而a=5b,c=a2-b2=2b.故e=255.(2)由题设条件和(1)的计算结果可得,直线AB的方程为x5b+=1,点N的坐标为52b,-12b,设点N关于直线AB的对称点S的坐标为x1,72,则线段NS的中点T的坐标为54b+x12,-14b+74.又点T在直线AB上,且kNSkAB=-1,从而有54b+x125b+-14b+74b=1,72+12bx1-5b2=5,解得b=3,所以a=35,故椭圆E的方程为x245+y29=1.考点二椭圆的几何性质1.(2018课标全国文,4,5分)已知椭圆C:x2a2+y24=1的一个焦点为(2,0),则C的离心率为() A.B.C.22D.223答案C2.(2018课标全国理,12,5分)已知F1,F2是椭圆C:x2a2+y2b2=1(ab0)的左、右焦点,A是C的左顶点,点P在过A且斜率为36的直线上,PF1F2为等腰三角形,F1F2P=120,则C的离心率为()A.B.C.D.答案D3.(2017课标全国文,12,5分)设A,B是椭圆C:x23+y2m=1长轴的两个端点.若C上存在点M满足AMB=120,则m的取值范围是()A.(0,19,+)B.(0,39,+)C.(0,14,+)D.(0,34,+)答案A4.(2018北京理,14,5分)已知椭圆M:x2a2+y2b2=1(ab0),双曲线N:x2m2-y2n2=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.答案3-1;25.(2016江苏,10,5分)如图,在平面直角坐标系xOy中,F是椭圆x2a2+y2b2=1(ab0)的右焦点,直线y=与椭圆交于B,C两点,且BFC=90,则该椭圆的离心率是.答案636.(2017天津文,20,14分)已知椭圆x2a2+y2b2=1(ab0)的左焦点为F(-c,0),右顶点为A,点E的坐标为(0,c),EFA的面积为b22.(1)求椭圆的离心率;(2)设点Q在线段AE上,|FQ|=c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PMQN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.解析本题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质和方程思想.考查运算求解能力,以及综合分析问题和解决问题的能力.(1)设椭圆的离心率为e.由已知,可得 (c+a)c=b22.又由b2=a2-c2,可得2c2+ac-a2=0,即2e2+e-1=0.又因为0e0),则直线FP的斜率为1m.由(1)知a=2c,可得直线AE的方程为x2c+=1,即x+2y-2c=0,与直线FP的方程联立,可解得x=(2m-2)cm+2,y=3cm+2,即点Q的坐标为(2m-2)cm+2,3cm+2.由已知|FQ|=c,有(2m-2)cm+2+c2+3cm+22=3c22,整理得3m2-4m=0,所以m=,即直线FP的斜率为.(ii)由a=2c,可得b=3c,故椭圆方程可以表示为x24c2+y23c2=1.由(i)得直线FP的方程为3x-4y+3c=0,与椭圆方程联立得消去y,整理得7x2+6cx-13c2=0,解得x=-13c7(舍去)或x=c.因此可得点Pc,3c2,进而可得|FP|=(c+c)2+3c22=5c2,所以|PQ|=|FP|-|FQ|=5c2-3c2=c.由已知,线段PQ的长即为PM与QN这两条平行直线间的距离,故直线PM和QN都垂直于直线FP.因为QNFP,所以|QN|=|FQ|tanQFN=3c2=9c8,所以FQN的面积为|FQ|QN|=27c232,同理FPM的面积等于75c232,由四边形PQNM的面积为3c,得75c232-27c232=3c,整理得c2=2c,又由c0,得c=2.所以椭圆的方程为x216+y212=1.方法点拨1.求离心率常用的方法:(1)直接求a,c,利用定义求解;(2)构造a,c的齐次式,利用方程思想求出离心率e的值.2.求直线斜率的常用方法:(1)公式法:k=y1-y2x1-x2(x1x2),其中两点坐标分别为(x1,y1),(x2,y2);(2)利用导数的几何意义求解;(3)直线的方向向量a=(m,n),则k=nm(m0);(4)点差法.3.解决四边形或三角形的面积问题时,注意弦长公式与整体代换思想的应用.C组教师专用题组考点一椭圆的定义和标准方程1.(2014安徽,14,5分)设F1,F2分别是椭圆E:x2+y2b2=1(0bb0)过点(0,2),且离心率e=22.(1)求椭圆E的方程;(2)设直线l:x=my-1(mR)交椭圆E于A,B两点,判断点G-94,0与以线段AB为直径的圆的位置关系,并说明理由.解析解法一:(1)由已知得b=2,ca=22,a2=b2+c2.解得a=2,b=2,c=2.所以椭圆E的方程为x24+y22=1.(2)设点A(x1,y1),B(x2,y2),AB的中点为H(x0,y0).由x=my-1,x24+y22=1得(m2+2)y2-2my-3=0,所以y1+y2=2mm2+2,y1y2=-3m2+2,从而y0=mm2+2.所以|GH|2=x0+942+y02=my0+542+y02=(m2+1)y02+ my0+2516.|AB|24=(x1-x2)2+(y1-y2)24=(1+m2)(y1-y2)24=(1+m2)(y1+y2)2-4y1y24=(1+m2)(y02-y1y2),故|GH|2-|AB|24=my0+(1+m2)y1y2+2516=5m22(m2+2)-3(1+m2)m2+2+2516=17m2+216(m2+2)0,所以|GH|AB|2.故点G-94,0在以AB为直径的圆外.解法二:(1)同解法一.(2)设点A(x1,y1),B(x2,y2),则=x1+94,y1,=x2+94,y2.由x=my-1,x24+y22=1得(m2+2)y2-2my-3=0,所以y1+y2=2mm2+2,y1y2=-3m2+2,从而=x1+94x2+94+y1y2=my1+54my2+54+y1y2=(m2+1)y1y2+m(y1+y2)+2516=-3(m2+1)m2+2+52m2m2+2+2516=17m2+216(m2+2)0,所以cos0.又,不共线,所以AGB为锐角.故点G-94,0在以AB为直径的圆外.评析本题主要考查椭圆、圆、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、方程思想.3.(2014江苏,17,14分)如图,在平面直角坐标系xOy中,F1、F2分别是椭圆x2a2+y2b2=1(ab0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为43,13,且BF2=2,求椭圆的方程;(2)若F1CAB,求椭圆离心率e的值.解析设椭圆的焦距为2c,则F1(-c,0),F2(c,0).(1)因为B(0,b),所以BF2=b2+c2=a.又BF2=2,故a=2.因为点C43,13在椭圆上,所以169a2+19b2=1,解得b2=1.故所求椭圆的方程为x22+y2=1.(2)因为B(0,b),F2(c,0)在直线AB上,所以直线AB的方程为+=1.解方程组xc+yb=1,x2a2+y2b2=1,得x1=2a2ca2+c2,y1=b(c2-a2)a2+c2,x2=0,y2=b.所以点A的坐标为2a2ca2+c2,b(c2-a2)a2+c2.又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为2a2ca2+c2,b(a2-c2)a2+c2.因为直线F1C的斜率为b(a2-c2)a2+c2-02a2ca2+c2-(-c)=b(a2-c2)3a2c+c3,直线AB的斜率为-,且F1CAB,所以b(a2-c2)3a2c+c3-bc=-1.又b2=a2-c2,整理得a2=5c2.故e2=.因此e=55.评析本题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运算求解能力.考点二椭圆的几何性质1.(2017课标全国理,10,5分)已知椭圆C:x2a2+y2b2=1(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为() A.63B.33C.23D.答案A2.(2016课标全国,11,5分)已知O为坐标原点,F是椭圆C:x2a2+y2b2=1(ab0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PFx轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为() A.B.C.D.答案A3.(2014江西,15,5分)过点M(1,1)作斜率为-的直线与椭圆C:x2a2+y2b2=1(ab0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于.答案224.(2017北京文,19,14分)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为32.(1)求椭圆C的方程;(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:BDE与BDN的面积之比为45.解析本题考查椭圆的方程和性质,直线的方程等知识,考查运算求解能力.(1)设椭圆C的方程为x2a2+y2b2=1(ab0).由题意得a=2,ca=32,解得c=3.所以b2=a2-c2=1.所以椭圆C的方程为x24+y2=1.(2)设M(m,n),则D(m,0),N(m,-n).由题设知m2,且n0.直线AM的斜率kAM=nm+2,故直线DE的斜率kDE=-m+2n.所以直线DE的方程为y=-m+2n(x-m).直线BN的方程为y=n2-m(x-2).联立y=-m+2n(x-m),y=n2-m(x-2),解得点E的纵坐标yE=-n(4-m2)4-m2+n2.由点M在椭圆C上,得4-m2=4n2.所以yE=-n.又SBDE=|BD|yE|=|BD|n|,SBDN=|BD|n|,所以BDE与BDN的面积之比为45.易错警示在设直线方程时,若设方程为y=kx+m,则要考虑斜率不存在的情况;若设方程为x=ty+n,则要考虑斜率为0的情况.5.(2015重庆,21,12分)如图,椭圆x2a2+y2b2=1(ab0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQPF1.(1)若|PF1|=2+2,|PF2|=2-2,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.解析(1)由椭圆的定义,有2a=|PF1|+|PF2|=(2+2)+(2-2)=4,故a=2.设椭圆的半焦距为c,由已知PF1PF2,得2c=|F1F2|=|PF1|2+|PF2|2=(2+2)2+(2-2)2=23,即c=3,从而b=a2-c2=1.故所求椭圆的标准方程为x24+y2=1.(2)解法一:连接F1Q,如图,设点P(x0,y0)在椭圆上,且PF1PF2,则x02a2+y02b2=1,x02+y02=c2,求得x0=aca2-2b2,y0=b2c.由|PF1|=|PQ|PF2|得x00,从而|PF1|2=aa2-2b2c+c2+b4c2=2(a2-b2)+2aa2-2b2=(a+a2-2b2)2.由椭圆的定义,有|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1PF2,|PF1|=|PQ|,知|QF1|=2|PF1|.因此(2+2)|PF1|=4a,即(2+2)(a+a2-2b2)=4a,于是(2+2)(1+2e2-1)=4,解得e=121+42+2-12=6-3.解法二:连接F1Q,由椭圆的定义,有|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1PQ,|PF1|=|PQ|,知|QF1|=2|PF1|,因此,4a-2|PF1|=2|PF1|,得|PF1|=2(2-2)a,从而|PF2|=2a-|PF1|=2a-2(2-2)a=2(2-1)a.由PF1PF2,知|PF1|2+|PF2|2=|F1F2|2=(2c)2,因此e=|PF1|2+|PF2|22a=(2-2)2+(2-1)2=9-62=6-3.6.(2014安徽,21,13分)设F1、F2分别是椭圆E:x2a2+y2b2=1(ab0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|F1B|.(1)若|AB|=4,ABF2的周长为16,求|AF2|;(2)若cosAF2B=,求椭圆E的离心率.解析(1)由|AF1|=3|F1B|,|AB|=4,得|AF1|=3,|F1B|=1.因为ABF2的周长为16,所以由椭圆定义可得4a=16,|AF1|+|AF2|=2a=8.故|AF2|=2a-|AF1|=8-3=5.(2)设|F1B|=k,则k0且|AF1|=3k,|AB|=4k.由椭圆定义可得|AF2|=2a-3k,|BF2|=2a-k.在ABF2中,由余弦定理可得|AB|2=|AF2|2+|BF2|2-2|AF2|BF2|cosAF2B,即(4k)2=(2a-3k)2+(2a-k)2- (2a-3k)(2a-k).化简可得(a+k)(a-3k)=0,而a+k0,故a=3k.于是有|AF2|=3k=|AF1|,|BF2|=5k.因此|BF2|2=|F2A|2+|AB|2,可得F1AF2A,AF1F2为等腰直角三角形.从而c=22a,所以椭圆E的离心率e=22.7.(2014天津,18,13分)设椭圆x2a2+y2b2=1(ab0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=32|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|=22.求椭圆的方程.解析(1)设椭圆右焦点F2的坐标为(c,0).由|AB|=32|F1F2|,可得a2+b2=3c2,又b2=a2-c2,所以=.所以椭圆的离心率e=22.(2)由(1)知a2=2c2,b2=c2.故椭圆方程为x22c2+y2c2=1.设P(x0,y0).由F1(-c,0),B(0,c),有=(x0+c,y0),=(c,c).由已知,有=0,即(x0+c)c+y0c=0.又c0,故有x0+y0+c=0.因为点P在椭圆上,故x022c2+y02c2=1.由和可得3x02+4cx0=0.而点P不是椭圆的顶点,故x0=-c,代入得y0=,即点P的坐标为-4c3,c3.设圆的圆心为T(x1,y1),则x1=-43c+02=-c,y1=c3+c2=c,进而圆的半径r=(x1-0)2+(y1-c)2=53c.由已知,有|TF2|2=|MF2|2+r2,又|MF2|=22,故有c+23c2+0-23c2=8+c2,解得c2=3.所以椭圆的方程为x26+y23=1.【三年模拟】一、选择题(每小题4分,共8分)1.(2019届浙江名校新高考研究联盟第一次联考,8)已知F1、F2是椭圆x2a2+y2b2=1(ab0)的左、右焦点,过左焦点F1的直线与椭圆交于A,B两点,且满足|AF1|=2|BF1|,|AB|=|BF2|,则该椭圆的离心率是() A.B.33C.32D.53答案B2.(2018浙江名校协作体期初联考,8)设A,B是椭圆C:x24+y2k=1长轴的两个端点,若C上存在点P满足APB=120,则k的取值范围是() A.0,4312,+)B.0,236,+)C.0,2312,+)D.0,436,+)答案A二、填空题(单空题4分,多空题6分,共8分)3.(2019届金丽衢十二校高三第一次联考,17)已知P是椭圆x2a2+y2b2=1(ab0)上的动点,过P作椭圆的切线l与x轴、y轴分别交于点A、B,当AOB(O为坐标原点)的面积最小时,cosF1PF2= (F1、F2是椭圆的两个焦点),则该椭圆的离心率为.答案234.(2018浙江嘉兴教学测试(4月),17)已知椭圆x2a2+y2b2=1(ab0),直线l1:y=-x,直线l2:y=x,P为椭圆上任意一点,过P作PMl1且与直线l2交于点M,作PNl2与直线l1交于点N,若|PM|2+|PN|2为定值,则椭圆的离心率为.答案32三、解答题(共60分)5.(2019届浙江嘉兴9月基础测试,21)已知椭圆x2a2+y2=1(a0),直线l经过点P0,22交椭圆于A,B两点,当lx轴时,|AB|=2.(1)求椭圆的方程;(2)求|AB|的取值范围.解析(1)不妨设点A在点B的右侧.当lx轴时,点A,B的坐标分别是1,22,-1,22,所以1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论