社会其它相关论文-生物制氢展望.doc_第1页
社会其它相关论文-生物制氢展望.doc_第2页
社会其它相关论文-生物制氢展望.doc_第3页
社会其它相关论文-生物制氢展望.doc_第4页
社会其它相关论文-生物制氢展望.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

社会其它相关论文-生物制氢展望【摘要】制氢的方法包括化石能源制氢、电解水制氢、生物制氢、热解制氢等1。其中,生物制氢具有节能、清洁、原料来源丰富、反应条件温和、能耗低和不消耗矿物资源等优点2,3。1生物制氢原理广义地讲,生物制氢是指所有利用生物产生氢气的方法,包括微生物产氢和生物质气化热解产氢等4,5。狭义地讲,生物制氢仅指微生物产氢,包括光合细菌(或藻类)产氢和厌氧细菌发酵产氢等2,6,7,8,9。本文只讨论狭义上理解的生物制氢,这也是利用生物制氢的主要研究方向3,6。迄今为止一般采用的方法有:光合生物产氢,发酵细菌产氢,光合生物与发酵细菌的混合培养产氢。1.1生物制氢的三种方法1)光合生物产氢利用光合细菌或微藻将太阳能转化为氢能8,10。目前研究较多的产氢光合生物主要有蓝绿藻、深红红螺菌、红假单胞菌、类球红细菌、夹膜红假单胞菌等6,11。2)发酵细菌产氢利用异养型的厌氧菌或固氮菌分解小分子的有机物制氢8。能够发酵有机物产氢的细菌包括专性厌氧菌和兼性厌氧菌,如丁酸梭状芽孢杆菌、大肠埃希氏杆菌、产气肠杆菌、褐球固氮菌、白色瘤胃球菌、根瘤菌等6,11。与光合细菌一样,发酵型细菌也能够利用多种底物在固氮酶或氢酶的作用下将底物分解制取氢气,底物包括:甲酸、乳酸、丙酮酸及各种短链脂肪酸、葡萄糖、淀粉、纤维素二糖,硫化物等。发酵气体中含H2(40%49%)和CO2(51%60%)。CO2经碱液洗脱塔吸收后,可制取99.5%以上的纯H2。产甲烷菌也可被用来制氢。这类菌在利用有机物产甲烷的过程中,首先生成中间物H2、CO2和乙酸,最终被产甲烷菌利用生成甲烷。有些产甲烷菌可利用这一反应的逆反应在氢酶的催化下生成H211。3)光合生物与发酵细菌的混合培养产氢由于不同菌体利用底物的高度特异性,它们能分解的底物是不同的。要实现底物的彻底分解并制取大量H2,应考虑不同菌种的共同培养。YokoiH.等采用丁酸梭菌(Clostridiumbutylicm)、产气肠杆菌(Enterobacteraerogenes)和类红球菌(Rhobactersphaerbdies)共同培养,从甜土豆淀粉残留物中制取H2,可连续稳定产氢30天以上,平均产氢量为4.6molH2/mol葡萄糖,是单独利用C.butylicm产氢量的两倍。原因在于C.butylicm产生的淀粉酶能降解淀粉成葡萄糖来产氢,E.aerogenes中不含淀粉酶,只能直接利用葡萄糖产氢。而在两者代谢的过程中,葡萄糖降解除了产生H2,还产生两者不能利用的小分子有机酸,使培养基的pH值下降,偏离了微生物的最适生长条件,从而使氢气产量下降。但当三者共同培养时,葡萄糖降解产生的有机酸能被R.sphaerbdies降解,从而使培养基pH值保持恒定,葡萄糖能够被充分利用,产氢量大大提高11。1.2生物制氢的方法比较光合生物制氢的优势在于对蓝细菌(Cyanobacteria)的研究较早,已经积累了丰富的经验,且光合细菌的底物范围也较广12;光合细菌对光的转化效率高13。但光合生物制氢存在以下问题:1)蓝细菌和绿藻在产氢的同时伴随氧的释放,易使氢酶失活1,14。消除氧气的机械法和化学法3或者消耗大量惰性气体和能量,或者导致不可逆反应使细胞失活,都不可取。2)光合产氢微生物只对特定波长的光线有吸收作用15,而提供充分的波长合适的光能又会消耗大量的能源,光源的维护与管理变得复杂,使产业化制氢难度变大7,11。发酵法生物制氢较光合法生物制氢具有以下几个优点:1)发酵产氢菌株的产氢能力要高于光合产氢菌株的产氢能力。2)在实际培养中,发酵细菌生长要快于光合细菌。3)无需光照,不但可以昼夜持续产氢,且产氢反应装置的设计简单,操作管理方便。4)可以使单台制氢设备的容积足够大,提高单台制氢设备的产氢能力,易于实现工业化生产规模。5)可以广泛利用工业废料为底物,实现废物处理的资源化。6)混合培养时,产氢细菌驯化和启动更容易6,7,13,16,17,18。2生物制氢的发展历程早在100多年前,科学家们就发现在微生物作用下,通过蚁酸钙的发酵可以从水中制取氢气2,7。20世纪70年代世界性的能源危机爆发,生物制氢的可行性研究受到高度重视18。生物制氢技术最早由Gaffron和Rubin提出并首先展开了相关研究,此后该项研究在世界上许多国家迅速展开18。迄今为止,已有牛粪废水、精制糖废水19、豆制品废水、乳制品废水、淀粉废水、酿酒废水14、麦麸、酒糟、玉米秸秆等农业固体废弃物20以及厨余垃圾3被转变为生物氢气,但研究规模还处于实验室水平。人们为了提高反应器内的生物量,普遍利用纯菌种9,在菌体培养方面研究固定化技术。传统观点认为,微生物体内的产氢系统(主要是氢化酶)很不稳定,只有进行细胞固定化,才可能实现持续产氢。李建政等使用肠杆菌E.82005菌株进行试验11,连续流非固定化试验的产气率仅为琼脂固定化试验的1/7。然而,固定化技术也有不足。细菌的包埋是一种很复杂的工艺,要求有与之相适应的纯菌种生产、菌体固定化材料开发及加工工艺,使制氢成本大幅度增加;细胞固定化形成的颗粒内部传质阻力较大,使细胞代谢产物在颗粒内积累而对生物产生反馈抑制和阻遏作用,从而会使生物产氢能力降低;固定化的细菌容易失活,一般经3到6个月运行后需要更换,增加了运行成本18。任南琪在1990年提出了以厌氧活性污泥为制氢生产者,利用碳水化合物为原料的发酵法生物制氢技术1,21。该法避免了利用纯菌种进行生物制氢所必须的纯菌分离、扩大培养、接种与固定化等一系列配套技术和设备,在大幅度降低生物制氢成本的同时,也提高了生产工艺的可操作性,在技术上更易满足工业化生产的要求22。中国哈尔滨工业大学通过选育得到了高转化细菌,建立了非固定化连续流混合菌发酵方法,已完成5001000标准m3/d的中试试验,目前正建立600m3/d的工业化试验装置,成本低于水电解法制氢成本2,13。虽然在发酵法制取氢气的研究上已经取得了很大的成绩,但是这种技术至今没有被广泛的利用,说明它还存在很多问题受到很大限制6。另外,对于生物制氢,氢气的纯化与储存是一个很关键的问题。生物法制得的氢气的体积分数通常为60%90%,气体中可能混有CO2、O2和水蒸气等。有人尝试使反应气体通过钯银膜,以实现反应与分离的耦合1。3生物制氢的问题与研究重点目前,生物制氢需要解决的问题及研究重点主要可概括为以下几个方面:1)氢气形成的生物化学机制研究。进一步深入、准确地表达氢气的代谢途径及调节机制,为提高光合产氢效率及其它应用方面的研究提供基础。2)高产菌株的选育。优良的菌种是生物制氢成功的首要因素,目前还没有特别优良的高产菌株的报道,需要加强常规筛选和基因工程筛选方面的研究。3)光的转化效率及转化机制方面的研究。光能是光合生物制氢的唯一能源,需要深入研究光能吸收、转化和利用方面的机理,提高光能的利用率,以加快生物产氢的工业化进程。4)原料利用种类的研究。研究资源丰富的海水以及工农业废弃物、城市污水、养殖厂废水等可再生资源,同时注重污染源为原料进行光合产氢的研究,既可降低生产成本又可净化环境。5)连续产氢设备及产氢动力学方面的研究。6)氢气与其它混合气分离工艺的研究。7)副产物利用方面的研究。光合产氢时原料对氢气的转化率很低,在提高氢气转化率的同时研究其它有用副产品的回收和利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论