(论文)太阳能路灯控制器电路2例(2013年优秀毕业设计论文)_第1页
(论文)太阳能路灯控制器电路2例(2013年优秀毕业设计论文)_第2页
(论文)太阳能路灯控制器电路2例(2013年优秀毕业设计论文)_第3页
(论文)太阳能路灯控制器电路2例(2013年优秀毕业设计论文)_第4页
(论文)太阳能路灯控制器电路2例(2013年优秀毕业设计论文)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

太阳能路灯控制器电路2例 (组图)2008-08-12 08:20:17中国能源信息网我要评论 核心提示:太阳能路灯控制器电路.1 工作原理电路原理见图 1 所示。该电路由以 U5 为核心组成的蓄电池过充电控制电路、以 U 4A U4D为核心组成的蓄电池电压指示电路及显示电压按钮开关 KS1 电路、以 U1B 组成的蓄电池过放电控制电路、以 U1A组成的开灯检测控制电路、以 U2 组成的开灯及延时熄灯及二次开灯定时控制电路,以及以控制三极管Q2驱动继电器组成的输出控制电路等组成。现分别介绍如下。(1) 过充电、过放电检测保护部分太阳能电池组件板或阵列由插口 CZ1 的脚输入,加至防反充电二极管 D2 的正极D2的负极接 12V 蓄电池的正极,即 CZ1 的脚。控制器在初始上电时,由于 C4 的作用使 U5脚为低电平,脚输出高电平,Q7 导通; Q8 截止,允许太阳能电池给蓄电池充电。当蓄电池所充的电压小于 14 4V 时,由R13 、 (R38 十R39) 组成的串联分压电路送至 U5 、电压低于 2 3 U5 的供电电压时,即小于6V,电路维持充电状态;随着充电时间的延长,蓄电池电压逐渐升高,当 U5 、的电压高于 2 3 U5 供电电压时,U5脚输出低电平, Q7 截止、 Q8 导通,给太阳能电池板泄放电流,停止对蓄电池充电。在U5脚输出低电平的状态下,其脚导通,相当于将 1140 并入电路中。此时电路的分压比为: R38+ R39 R40IRl3+(R38+R39) R40 ,不难算出,当蓄电池电压低于设定值 13V 时电路状态再次翻转,U5脚输出高电平,允许蓄电池充电。(2) 开灯检测方法与控制太阳能电池板是一个很好的光敏元件,其输出电流、电压能随着接受光的强度和照度变化而变化,本控制器就是利用这一原理实现开、关灯控制的。太阳能电池板PVin 输入电压经 R5 、 R6 串联分压后;加至运放 U 1A 脚,其脚接于 R9 、R8+VR1的分压点上。在白天,太阳能电池板在阳光的照射下输出电压很高,其经 R5 、 R6 分压后使运放 U 1A脚电压高于脚, U 1A脚输出低电平, Q1 截止, U2 无供电电压不工作,Q2截止,继电器不吸合,系统无输出电压,路灯不工作。随着天色渐黑,太阳能电池板输出电压降低。 UlA 脚的电压也同步降低,当 U1A脚电压低于脚时,比较器翻转, U 1A 脚输出高电平, Q1 导通,定时电路 U2 得电工作, Q2 导通、JDQ1吸合点亮路灯。图中 VR1 为路灯开灯时刻设置调节电位器,调节 VRl 可设置不同时刻点亮路灯。DW1是钳位二极管,作用是避免白天太阳能电池板接受的电压过高导致 U 1A 脚输入电压过高而损坏。 C1 为储能电容,作用是防止 U1A脚电压瞬时突变误点亮路灯。 R14 为反馈电阻其作用是使 U 1A 成为一个迟滞比较器防止和避免 U1A在开灯点附近振荡而反复开、关路灯。(3) 路灯延时电路点亮、熄灭控制电路延时控制电路选用 CD4541BE 可编程定时控制芯片,它功耗低、内置可编程分频器电路,最大分频级数为 65536 级。本控制器设计定时开灯和定时关灯时间调节范围是: 2 093 小时 -11 93 小时分别由 V : R2 和VR3控制调节。(4) 蓄电池停止放电优先控制电路若在路灯欲点亮或已点亮时,蓄电池电压已经低于其允许终止放电值时, Q4 导通此时无论 U 1A 输出高电平与否,均会使Q1截止,从而保护蓄电池避免过放电损坏。(5) 电池电压指示电路为了让现场看管、维护人员及时了解、掌握蓄电池的状态,本控制器设有 LED 电池电压指示装置,通过LLED点亮的数量指示蓄电池电压的高低。2 电路调试制作中发现。 NE555 时基电路的实际状态转换点,即 1 3V( : C 与 2 3VCC状态的翻转跳变点并不是严格遵循理论值。通过调节电阻 R13 可实现 14 4V 的过充电控制。将 R13 由设计的100k换为 120k 即可达到实际要求。同理,通过调节 VR4 可校准蓄电池指示电压。二、用 PIC 12F 675 单片机制作的太阳能路灯控制器图 2 是用: PIC 12F 675 单片机制作的太阳能路灯控制器电路。 PIC 12F 675 是 8 引脚单片机,具有 6个I 0 口,自带内部 RC 振荡器 ( 振荡频率为 4MHz) 、 4 路 10 位 A D转换器、一路比较器,该控制器性能稳定、可靠,耗电低。1 工作原理PIC 12F675控制蓄电池的过充电、过放电,开、关路灯功能,定时点亮、天黑自动点亮、延时点亮、自动跟踪点亮等功能,路灯点亮测试控制功能,LED指示功能等。由蓄电池 BTl 、蓄电池过充电控制执行场效应管 01 、三端稳压器 U1 组成电源供电系统; Q2 、 Q4组成放电控制;K1 手动, R_GM1 光控自动开灯系统,蓄电池分压电阻,发光指示二极管等部分组成。太阳能电池板电压由接口J3输入经防反充二极管 D1 后分成两路,一路经 U1 LM 78L 05 稳压后,为 PIC 12F675单片机提供工作电源,另一路经 FB 保险丝给蓄电池充电。单片机上电后,首先由 Rf 、 Cf组成的硬件电路进行复位然后由软件控制U2 脚 GP4 输出高电平,让 Q4 导通、 Q2 截止,控制系统停止放电,再检测 U2脚 GP0 上的分压值,通过内部 A D 转换及软件运算间接检测、判断蓄电池是否欠压、过压若蓄电池发生过充电,则通过软件控制U2 脚 GP5 输出高电平,使 Q1导通短路太阳能电池板、停止向蓄电池充电,同时点亮“过充电”指示灯 LED2;若未发生过充电,则 U2 脚 GP5输出低电平,允许蓄电池充电。通过检测 U2 脚 GP1 所接的光敏电阻R_GM1上的分压值,判断是否已经“天黑,到了开路灯时间”,若到了预设的开灯点,则由软件控制 u2 脚 GP4 输出低电平,使 Q4截止、02 导通,点亮路灯。若不到开灯点,则程序返回,循环检测上述诸参数。K1 是手动开灯按钮。按下 K1 ,路灯点亮。单片机通过检测光敏电阻R_GM1上的分压值,判断是否“天黑”,若是天黑则按设计要求点亮路灯,若否,单片机进入路灯控制器“测试”功能:2分钟后路灯自动熄灭。2 说明由于单片机程序设计十分灵活,故这里用“开灯点”作为开灯标记符,这个点可以是时间。也可以是天黑的“程度”。若定义的是时间,可以让路灯从此时开始计时,点亮若干小时后熄灭;若是天黑的程度,可以让路灯到了此天黑程度后开始点亮。此后既可计时熄灭,也可判别天亮后熄灭。一切由软件设计人员抉择。 本篇文章来源于中国太阳能信息网|Solar.NengYuan.Net 原文链接:/2008/0812/2301.html电流10A 太阳能控制器原理图IC1 TLC2272CpIC2 78L05(12V)D1 19TQ015(24V)D2 18TQ045(6v)1N5232 5.6V 0.5W 稳压二极管(12v)1N5342 12V 0.5W 稳压二极管(24v)1N5252 24V 0.5W 稳压二极管Q1 2N3904Q2 2N3906Q3 IRF9Z34NLED1 红/绿双色c1 47f,50vc2-c4,c7-c9 0.1FC5,C6 0.01F(12V)TZ1 27V 瞬态电压抑制器(24)tz1 47V 瞬态电压抑制器(12V)TM1 3.3K(25) NTC 热敏电阻(24V)TM1 4.7K(25) NTC 热敏电阻所有电阻 1/4wR1(忽略)R2,R4 10KR3(忽略)R5,R8 100KR6 75R11 75KR10 180KR9 200K(6V)R12 100K(12V)R12 300K(24V)R12 470KR7 4.7M(12V)VR1 100K 多圈电位器(24v)VR1 500K 多圈电位器F1 10A 保险s1 S2 DIP开关简单的太阳能充电电路 之所以列在第一位不单单是因为它结构简单的,还有一点就是它是我第一个接触的太阳能控制器电路,还记得那时我拿着用铅笔画的电路图到家乡唯一的元件店里买元件,老板不懂上面的继电器符号,坚持说是我画错了。后来开学了,在前进四路我终于把要买的元件买齐,在实验室借了个面包板,调试完又焊接。遗憾的是当时在武汉买不到一块太阳能电池板(现在好象买不到),虽然做了个半成品,但是从此让我的太阳能梦想走出了第一步,多说了几句,言归正传。图片如下:此主题相关图片 这是一个给v的蓄电池不间断充电的电路。 图中D1(A)是个反充二极管,是光伏系统的必须的装置,作用是防止电流倒流;LM317是给集成块提供v的电源的;J1和J2是两个继电器,继电器通常有常开状态和常闭状态;这里把LM393当电压比较器用;RP1和RP2是用做用户设定过充和过放电压的。电压比较和继电器达到不间断充电的目的。网上的另外一个充电电路(转载)图片位置:/info/uppic/13561_278854.jpg所示太阳能灯电路是一种低损耗电路,使用一只7W四引脚CFL(小型荧光灯)和一块12V、7-Ahr密封免维护电池。逆变器的效率大于85%,静态电流小于2mA。它有一个带电池过放电保护*Gong*能和过充电保护*Gong*能的并联充电控制器。低静态电流、过放电保护*Gong*能和过充电保护*Gong*能三者确保电池使用寿命很长。逆变器的预热*Gong*能可以避免CFL两端变黑,从而延长其使用寿命。这一电路可在农村地区用作一种可靠小巧的便携式光源,在城市用作应急灯系统。并联充电控制器电路包括IC1(低电流2.5V电压基准源LM385)和IC2(LM324比较器)。配有电阻R1 R8和三极管Q1的IC2A可防止电池过放电。 当电池电压低于10.8V时,该电路切断负载(逆变器和灯管),从而防止电池过放电。在无负载状况下,电池放电后的电压约为12.2V,因此,为防止出现振荡现象,电路提供的过放电复位电压为12.3V。红发光二极管LED1指示低电压状态。配有电阻R9 R14和三极管Q2的IC2B可防止电池过充电。当电池电压超过14.8V时,Q2导通,并使太阳能电池阵列旁流,从而防止电池过充电。当电池电压低于12.5V时,Q2截止,太阳能板电池阵列对电池进行充电。D2为一支反向阻隔二极管。它能防电池在太阳能电池不产生电能时对太阳能电池放电。黄发光二极管LED2指示电池充满电。绿发光二极管LED3与IC2c和电阻R15 R20一起,提供充电指示。 采用单片机为控制核心的控制器电路 分微处理器电路、稳压电源电路、实时时钟电路、液晶显示电路、充电开关电路、键盘接口电路,由于网上没有电路图,我也没发把图发上来,就说说重要部分的原理吧。单片机有用c的也有用的,也有用pic的,都是将太阳电池采样测量经AD转换于单片机通信,显示电路可以人机界面,方便控制,时钟电路可以提供时间输出,可实现对路灯控制。太阳能路灯控制器:我这有个电路图,它一共分成几部分。单片机电路,稳压电源电路,实时时钟电路,液晶显示电路,充点开关电路,放电开关电路,键盘接口电路,太阳电池和蓄电池接口电路组成。 等我把它扫描上来和大家共享。MPPT,就是最大功率点的跟踪,可以提高工作效率。MPPT的基本原理:它有很多电路构成,首先是单片机,还有书多外围电路,电压采集电路,电流采集电路,dc/dc电路。 还有很多要注意的地方,孤岛效应等等,我也不是很懂,正在学习中。 中大型的光伏电站的控制器要有以下几个功能:1) 防电池过充过放功能2) 可以及时把工作状态反馈给用户3) 负载的控制4) 提供各种接口5) 能源不够可以补充,多余可以提供给其他负载6) 防止蓄电池、光伏组件反

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论