




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
sparce coding and applications weizhi some examples image denoising image reconstruct image classification object detection importation object retrieval actions detection user recommendation text classification . outline what is sparse linear model how to do? decomposition problem reconstruction problem applications image denoising problem 3d object retrieval what is sparse representation similar to k-means k-means generate class each feature or sample is reconstructed by which class. sparse coding dictionary is similar to class each sample also is constructed by some word from dictionary. what is sparse linear model what is sparse linear model terrence tao proposed that rip constrain. how to do: decomposition problem we only have x and do not know d and a. how to do this problem: k-svd (general) efficient sparse coding algorithm nips 06 online dictionary learning for sparse coding, icml reconstruction problem we have d and x, how to get the a. matching pursuit orthogonal matching pursuit (general) application image denoising object detection 3d model retrieval image denoising training dictionary object detection dictionary 3d object retrieval h penalizes the distance between f and each feature in x experimental results references ansary, t. f., daoudi, m., & vandeborre, j. (n.d.). a bayesian 3d search engine using adaptive views clustering, 129. bengio, s., pereira, f., & strelow, d. (n.d.). group sparse coding, 18. chao, y.-w., yeh, y.-r., chen, y.-w., lee, y.-j., & wang, y.-c. f. (2011). locality-constrained group sparse representation for robust face recognition. 2011 18th ieee international conference on image processing, 761764. doi:10.1109/icip.2011.6116666 gao, y., wang, m., ji, r., wu, x., & dai, q. (2014). 3-d object retrieval with hausdorff distance learning. ieee transactions on industrial electronics, 61(4), 20882098. doi:10.1109/tie.2013.2262760 guoquan, w., yang, z., yanfeng, l., & lifen, w. (2013). an image denoising algorithm based on sparse representation, 36. mairal, j., leordeanu, m., & bach, f. (n.d.). discriminative sparse image models for class-specific edge detection and image interpretation, 114. bach, f., mairal, j., ponce, j., & sapiro, g. (2009a). sparse coding and dictionary learning for image analysis, (september). bach, f., mairal, j., ponce, j., & sapiro, g. (2009b). sparse coding and dictionary learning for image analysis, (september), 119. bach, mairal, ponce, & sapiro. (2009c). dictionary learning. elad, m., & aharon, m. (2006). image denoising via sparse and redundant representations over learned dictionaries. ieee transactions on image processing : a publication of the ieee signal processing society, 15(12), 373645. retrieved from /pubmed/17153947 mairal, j., elad, m., sapiro, g., ens, i., & umr, c. (2006). sparse learned representations for image restoration, 110. bach, f., mairal, j., ponce, j., & sapiro, g. (2009a). sparse coding and dictionary learning for image analysis, (september). bach, f., maira
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 39693.5-2025硫化橡胶或热塑性橡胶硬度的测定第5部分:用便携式橡胶国际硬度计法测定压入硬度
- 信息产业规范发展承诺书4篇
- 感恩母亲妈妈的温暖故事6篇
- 培训课程设计与学习资源整合工具
- 2025贵州黔东南州剑河县农村集体经济组织选聘职业经理人(总经理)考前自测高频考点模拟试题完整参考答案详解
- 企业管理规范涉及守秘责任保证承诺书3篇
- 2025广西壮族自治区文化和旅游厅幼儿园勤杂工(残疾人专岗)招聘1人考前自测高频考点模拟试题及答案详解(新)
- 婚礼场地预订服务承诺书3篇
- 2025杭州淳安县公开招聘中小学教师12人考前自测高频考点模拟试题及参考答案详解1套
- 2025-2026学年陕西省榆林市榆阳区某中学高三上学期开学英语试题(解析版)
- 艺人独家经纪合同(标准版)
- 2025年肺功能证考试题及答案
- 2026中国海洋石油集团有限公司秋季校园招聘备考考试题库附答案解析
- 2025年及未来5年中国羊奶粉行业市场调研分析及投资战略咨询报告
- 学校物业委托管理服务合同7篇
- 2025-2026学年人教版二年级上册数学第三单元测试卷(含答案)(三套)
- 《守望成长法治护航》法制教育主题班会
- 桡骨骨折课件教学
- 2025年特种作业类冶金煤气作业理论知识-理论知识参考题库含答案解析(5卷)
- 2025-2030中国节能玻璃材料市场发展动态及竞争格局研究报告
- 数据标注课件
评论
0/150
提交评论