chap11_第1页
chap11_第2页
chap11_第3页
chap11_第4页
chap11_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Modern Control Theory Chapter 11:Analysis of Control Systems in State Space Dr.Y. X. Liu Automation Department Inner Mongolia University 2004-3-16Y. X. Liu, Inner Mongolia University2 Lecture Content ? About author ? The basic concepts about state space ? State-space representations ? Diagonalization of nn matrix ? Properties of state-transition matrices ? Results in vector-matrix analysis ? Controllability and observability 2004-3-16Y. X. Liu, Inner Mongolia University3 About author ?Professor ?Department of Mechanical Engineering University of Minnesota ?B.S., 1947, Mechanical Engineering, University of Tokyo ?M.S., 1953, Mechanical Engineering, University of Illinois at Urbana-Champaign ?Ph.D., 1956, Engineering Science, University of California - Berkeley ?Telephone: (612) 625-9374 ?E-mail: Katsuhiko Ogata 2004-3-16Y. X. Liu, Inner Mongolia University4 Research ? Major research interests are in the field of discrete-time control systems, including optimal control of complex plants. ? Work includes mathematical modeling of complex plants and developing design techniques of discrete-time control systems and optimization problems, such as an optimal stopping problems, via a dynamic programming approach. 2004-3-16Y. X. Liu, Inner Mongolia University5 Selected Publications ?Systems Dynamics. 3rd ed. Upper Saddle River: Prentice Hall, 1998. ?Modern Control Engineering. 3rd ed. Upper Saddle River: Prentice Hall, 1997. ?Discrete-Time Control Systems, 2nd. ed. Upper Saddle River: Prentice Hall, 1995. ?Solving Control Engineering Problems with MATLAB. Upper Saddle River: Prentice Hall, 1994. ?Engenharia de Control Moderno, 2nd ed. Brazil: Prentice Hall, 1993. ?“Metody Przestrzeni Stanow w Teorii Sterowania.“ Wydawnictwa, Naukowo, Techniczne, Warsaw, Poland, 1974. ?Dynamic Programming. Tokyo. Japan: Baifukan Co., 1973. 2004-3-16Y. X. Liu, Inner Mongolia University6 The concepts about state space ? States and state variables ?表征系统运动的信息称为状态。确定系统的状态的 一组独立(数目最少)变量称为状态变量记为: ? State vectors ?把描述系统状态的n个状态变量x1(t),x2(t),xn(t)看 作向量x(t)的分量,则x(t)称为n维状态向量。 ? State space ?以n个状态变量作为坐标轴所组成的n维空间称为状 态空间。 )(),.,(),(21txtxtxn 2004-3-16Y. X. Liu, Inner Mongolia University7 State-space equations 1 ? Single input ?assume state variables: x1(t),x2(t),xn(t),and the common form of state equation is as follow: ( )( )( )( )( ) ( )( )( )( )( ) ( )( )( )( )( ) += += += tubtxatxatxatx tubtxatxatxatx tubtxatxatxatx nnnnnnn nn nn L& M L& L& 2211 222221212 112121111 ( )( )( )tuttbAxx+=& = = = = nnnnn n n nnb b b aaa aaa aaa x x x x x x M L MMM L L & M & & & M 2 1 21 22221 11211 2 1 2 1 ,bAxx 2004-3-16Y. X. Liu, Inner Mongolia University8 State-space equations 2 ? Multiple input ?For the multiple input (suppose p) the state variables are: x1(t),x2(t), xn(t),and the common form of state equation is as follow: ( )( )( )( )( )( )( ) ( )( )( )( )( )( )( ) ( )( )( )( )( )( )( ) += += += tubtubtubtxatxatxatx tubtubtubtxatxatxatx tubtubtubtxatxatxatx pnpnnnnnnnn ppnn ppnn LL& M LL& LL& 22112211 222212122221212 121211112121111 BuAxx+=& = = = = pnpnn p p nnnn n n nu u u bbb bbb bbb aaa aaa aaa x x x M L MMM L L L MMM L L M 2 1 21 22221 11211 21 22221 11211 2 1 ,uBAx 2004-3-16Y. X. Liu, Inner Mongolia University9 Output equations ? Signal: ( )( )( )( )( ) ( )( )( )tdutcty tdutxctxctxcty nn += += x L 2211 ?Multiple: ( )( )( )( )( )( )( ) ( )( )( )( )( )( )( ) ( )( )( )( )( )( )( ) += += += tudtudtudtxctxctxcty tudtudtudtxctxctxcty tudtudtudtxctxctxcty pqpqqnqnqqq ppnn ppnn LL M LL LL 22112211 222212122221212 121211112121111 DuCxy+= = = = = pqpqq p p nqq n n nu u u ddd ddd ddd cqcc ccc ccc y y y M L MMM L L L MMM L L M 2 1 21 22221 11211 21 22221 11211 2 1 ,uDCy 2004-3-16Y. X. Liu, Inner Mongolia University10 State-space representations ? Single input single output duy u += += cx bAxx& ?Multiple input multiple output DuCx BuAxx += += y & x=n vector,u=p1 vector,y=q1vector, A=nn matrix,B=np matrix,C=qn matrix, D=qp matrix. x=n vector,u and y are scalars,A=nn matrix, b=n1 matrix,c=1n matrix,d is scalar. + + D dt A BC )(tu)(ty)(tx&)(tx 2004-3-16Y. X. Liu, Inner Mongolia University11 State-space representations of transfer function systems ( ) ( ) nn nn nn nn asasas bsbsbsb sU sY + + = 1 1 1 1 1 10 L L ?Consider a system defined by: ? Controllable canonical forms: ?1. Define state variables as follows (P701, 11.17): ()()()ubxbabxbabxbaby uxaxaxax xx xx xx nnnnn nnnn nn 0011201110 1211 1 32 21 += += = = = L L& & M & & 2004-3-16Y. X. Liu, Inner Mongolia University12 Controllable canonical form 1 ? State equation: ?Output equation: u x x x x aaaax x x x n n nnnn n + = 1 0 0 0 1000 0100 0010 1 2 1 121 1 2 1 MM L L MMMM L L & & M & & ub x x x babbabbaby n nnnn0 2 1 0110110 + = M L 2004-3-16Y. X. Liu, Inner Mongolia University13 Block diagram of the system defined by controllable canonical form + b2-a2b0 b0 u x1 y x2xn-1xn a2a1an-1an bn-1-an-1b0bn-anb0b1-a1b0 + + + + + + - + + + + + + + + 2004-3-16Y. X. Liu, Inner Mongolia University14 Controllable canonical form 2 u x x x xaaaa x x x x n n nn n n + = 0 0 0 1 1000 0100 0001 1 2 1121 1 2 1 MM L L MMMM L L & & M & & ?2. Define state variables as follows: 1 21 12 12111 = = = += nn nn nnn xx xx xx uxaxaxax & & M & L& ?State equation: 2004-3-16Y. X. Liu, Inner Mongolia University15 Observable canonical form ? State equation: ?Output equation: u bab bab bab x x x a a a x x x x nn nn n n n n n + = 011 011 0 2 1 1 1 1 2 1 100 001 000 MM L MMMM L L & & M & & ub x x x x y n n 0 1 2 1 1000+ = L 2004-3-16Y. X. Liu, Inner Mongolia University16 Block diagram of the system defined by observablecanonical form + b0 u x1 y x2xn-1xn a1an-1an bn-1-an-1b0bn-anb0b1-a1b0 + + + + + - 2004-3-16Y. X. Liu, Inner Mongolia University17 Diagonal canonical form 1 ? Denominator polynomial of transfer function involves only distinct roots ( ) ( )()()() n n n nn nn ps c ps c ps c b pspsps bsbsbsb sU sY + + + + + += + + = L L L 2 2 1 1 0 21 1 1 10 u x x x p p p x x x nnn + = 1 1 1 0 0 2 1 2 1 2 1 MO & M & & ub x x x cccy n n0 2 1 21 + = M L ?State equation: ?Output equation: 2004-3-16Y. X. Liu, Inner Mongolia University18 Block diagram of the system defined by diagonalcanonical form pi: poles of G(s) ci: residues of related poles b0 ux1y x2 xn c1 c2 cn + + + + 1 1 ps+ 2 1 ps+ n ps+ 1 + 2004-3-16Y. X. Liu, Inner Mongolia University19 Diagonal canonical form 2 ? State equation: u c c c x x x p p p x x x nnnn + = MO & M & & 2 1 2 1 2 1 2 1 0 0 ub x x x y n 0 2 1 111+ = M L ?Output equation: 2004-3-16Y. X. Liu, Inner Mongolia University20 Jordan canonical form ? Denominator polynomial of transfer function involves only one three-multiple roots ( ) ( )() ()()() () n n n nn nn ps c ps c ps c ps c ps c b pspsps bsbsbsb sU sY + + + + + += + + = L L L 4 4 1 3 2 1 2 3 1 1 0 4 3 1 1 1 10 u x x x x x p p p p p x x x x x nn + = 1 1 1 0 0 000 000 0000 10 0001 4 3 2 1 4 1 1 1 1 1 1 1 1 MM L MM L L MM L & M & & & & ub x x x cccy n n0 2 1 21 + = M L ?State equation: ?Output equation: 2004-3-16Y. X. Liu, Inner Mongolia University21 Block diagram of the system defined by Jordancanonical form b0 u x1 y x2 xn c1 c4 cn + + + + 1 1 ps+ 4 1 ps+ n ps+ 1 1 1 ps+ 1 1 ps+ c3 c2 x3 x4 + + + + + 2004-3-16Y. X. Liu, Inner Mongolia University22 Diagonalization of nn matrix 1 ? 1,n= n distinct eigenvalues of any nnmatrix A, will transform P-1AP into the diagonal matrix with a linear nonsingular matrix P. = n 0 0 2 1 1AP P ?P = n real eigenvectors A ()nippp ppp iiiii n L L , 10or 21 = = AIA P 2004-3-16Y. X. Liu, Inner Mongolia University23 Diagonalization of nn matrix 2 ? 1,n= n distinct eigenvalues of an nn unitary matrix A. Vandermode matrix P will transform P-1AP into the diagonal = 11 2 1 1 22 2 2 1 21 111 n n nn n n L MMM L L L P = 121 1000 0100 0010 aaaa nnn L L MMMM L L A = n 0 0 2 1 1AP P 2004-3-16Y. X. Liu, Inner Mongolia University24 Diagonalization of nn matrix 3 ?An nnmatrix A involves m equal eigenvalues (1=m), and other (n-m) distinct eigenvalues. If there are independent real eigenvectors p1,pmwhen solution (iI-A)pi=0 (i=1,m) will transform P-1AP into the diagonal. = + n m 0 0 1 1 1 1 O O APP nmm ppppLL 11+ =p 2004-3-16Y. X. Liu, Inner Mongolia University25 Jordan canonical form 1 ? Matrix A involves m equal eigenvalues 1, others (n-m) distinct eigenvalues. If there is only one real eigenvector p1 when solution (iI-A)pi=0 will transform P-1AP into Jordan only. = + n m 0 1 01 1 1 1 1 1 O O O APP nmm ppppLL 11+ =p mm ppppppL O O L 21 1 1 1 21 1 1 A= p1pm: generalized real eigenvector: 2004-3-16Y. X. Liu, Inner Mongolia University26 Jordan canonical form 2 ? Unitary Matrix A involves m equal eigenvalues 1, and there is only one real eigenvector p1, the P transform P-1AP into Jordan canonical form, and Ps form as follows: = = + 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 n nm m m p pp ppp p M LLP 2004-3-16Y. X. Liu, Inner Mongolia University27 Jordan canonical form 3 ? Suppose Matrix A involves 5 equal eigenvalues 1, but there are 2 independent real eigenvector p1, p2, others (n-5) distinct eigenvalues, will transform P-1AP into possible Jordan canonical form as follows: = n 0 1 1 01 6 1 1 1 1 1 1 O APP = n pp p p pp pL 6 2 2 2 2 1 1 2 1 1 1 P 2004-3-16Y. X. Liu, Inner Mongolia University28 Properties of state-transition matrices ( ) ( ) ( )( )( ) ()( ) ()() ( ) ( )()()( ) ( )() ( ) ()() () ( )( ) () () () () ( ) ( ) = = = = = = = = = = = += + + PP xPx Axx BAAB BAAB xx AA AAA A ABBABA ABBABA A t ttttt ttttt k kkt e eeeee eeeee ktt tttttt tttt tttt tttttt ttt I t k ttIet 1 011202 00 11 122121 22 t define ofmatrix n transitiostate is t suppose .9 .8 .7 .6 .5 .4 .3 .2 0.1 ! 1 2 1 & & LL 2004-3-16Y. X. Liu, Inner Mongolia University29 State-transition matrices ? A=diag1,n, and distinct elements ( ) = t t n e e t 0 0 1 O ?mm Jordan matrix A = 0 1 01 O O A ( ) () () = t t t m tt t m ttt e te e m t tee e m t e t tee t L L MMMM L L 000 000 !2 0 !12 2 12 2004-3-16Y. X. Liu, Inner Mongolia University30 Results in vector-matrix analysis ? Cayley-Hamilton theorem ?An nn matrix A and its characteristic equation ?matrix A satisfies its own characteristic equation ( )0 1 1 1 =+= nn nn aaafLAI ( )0 1 1 1 =+= IAAAA nn nn aaafL 2004-3-16Y. X. Liu, Inner Mongolia University31 Minimal polynomial ? The least-minimal polynomial having A as root is called the minimal polynomial. ?The minimal polynomial of an nn matrix A as polynomial () of least degree, ?Such that (A)=0, or ?The minimal polynomial () is given by ?d(), a polynomial of in , is the greatest common divisor of all the elements of adj(I-A). ( )nmaaa mm mm += 1 1 1 L ( )0 1 1 1 =+= Iaaa mm mm AAAAL ( ) ( ) d AI = 2004-3-16Y. X. Liu, Inner Mongolia University32 Computation of eAt (method 1) ? An nn matrix A, If D=P-1AP=diag1, ,n, then eAtcan be given by: 11DA PPPP = t t t tt n e e e ee 0 0 2 1 O ?An nn matrix A, If J=S-1AS is a Jordan matrix, then eAt can be given by: () () 11JA SSSS = t t t m tt t m ttt tt e te e m t tee e m t e t tee ee L L MMMM L L 000 000 !2 0 !12 2 12 2004-3-16Y. X. Liu, Inner Mongolia University33 Computation of eAt (method 2) ? The Laplace transform approach. eAtcan be given as follow: () 1 1 =AI A se t L L 2004-3-16Y. X. Liu, Inner Mongolia University34 Computation of eAt (method 3) ? Case 1: minimal polynomial of A involves only distinct roots. ?By using Sylvesters interpolation formula, it can be shown that eAt can be obtained by solving the following determinant equation: 0 1 1 1 12 12 1 2 2 22 1 1 2 11 2 1 = tm tm mmm tm tm e e e e m A AAAIL L MMMMM L L ?Solving equation above for eAtis the same as writing ( )( )( )( ) 1 1 2 210 += m m t tatatataeAAAI A L and determining the ak(t) (k=0,1,2,m-1)by solving the following set of m equation for ak(t): ( )( )( )( ) ( )( )( )( ) ( )( )( )( ) tm mmmm tm m tm m m etatatata etatatata etatatata =+ =+ =+ 1 1 2 210 1 21 2 22210 1 11 2 12110 2 1 L M L L 2004-3-16Y. X. Liu, Inner Mongolia University35 Computation of eAt (method 3) ? Case 2: minimal polynomial of A involves multiple roots. ?Assume the minimal polynomial of A involves three equal roots (1=2=3) and other roots (4,5,m) that are all distinct. By using Sylvesters interpolation formula, it can be shown that eAtcan be obtained from the following determinant equation: ()() () 0 1 1 1 13210 22 21 3100 132 132 1 4 3 4 2 44 1 1 3 1 2 11 2 1 2 11 2 3 11 4 1 1 1 = tm tm mmmm tm tm tm tm e e e e tem e tmm m A AAAAIL L MMMMMM L L L L 2004-3-16Y. X. Liu, Inner Mongolia University36 Computation of eAt (method 3) ?It is noted that, just as in case 1, solving equation above for eAtis the same as writing ( )( )( )( ) 1 1 2 210 += m m t tatatataeAAAI A L and determining the ak(t)s (k=0,1,2,m-1)from ( )( ) ()() ( ) ( )( )( )()( ) ( )( )( )( ) ( )( )( )( ) ( )( )( )( ) tm mmmm tm m tm m tm m tm m m etatatata etatatata etatatata tetamtatata e t ta mm tata =+ =+ =+ =+ = + 1 1 2 210 1 41 2 42410 1 11 2 12110 1 11 2 13121 2 1 11132 4 1 1 1 132 22 21 3 L M L L L L 2004-3-16Y. X. Liu, Inner Mongolia University37 Linear independence of vectors ? The vectors x1,x2,xnare said to be linearly independent if 0 2211 =+ nn cccxxxL Where c1,c2,cnare constants, implies that 0 21 = n cccL ?If an nnmatrix Ais nonsingular, then ncolumn (or row) vectors are linearly independent. ?If the nnmatrix Ais singular, then ncolumn (or row) vectors are linearly dependent. rnonsingulaor0nrank=AA singularor0nrank=AA 2004-3-16Y. X. Liu, Inner Mongolia University38 State controllability 1 ? The eigenvetors of A are distinct ?The condition for complete state controllability is that the nnr matrix BAABB 1n L be of rank n, or contain nlinearly independent column vectors. 2004-3-16Y. X. Liu, Inner Mongolia University39 State controllability 2 ? If P-1AP= D= diag1, ,n. Let us define x=Pz + = += rnrn r r nn u u u ff ff ff z z z M L MM L L O & 2 1 1 221 111 2 1 2 1 11 0 0 BuPAPzPz If the eigenvectors of A are distinct then the system is completely state controllable if and only if no row of P-1B has all zero elements. 2004-3-16Y. X. Liu, Inner Mongolia University40 State controllability 3 ? If S-1AS=J is Jordan canonical form. Let us define x=Sz + = += r nrn r r r r r r nn u u u ff ff ff ff ff ff ff z z z z z z z M MM L L L L L L O & 2 1 1 661 551 441 331 221 111 6 5 4 3 2 1 6 4 4 1 1 1 11 0 0 1 00 10 001 BuSASzSz 2004-3-16Y. X. Liu, Inner Mongolia University41 For Jordan canonical form ? The system is completely state controllable if and only if ?no two Jordan blocks in J are associated with the same eigenvalues, ?the elements of any row of S-1B that correspond to the last row of each Jordan block are not all zero, ?The elements of each row of S-1B that correspond to distinct eigenvalues are not all zero. 2004-3-16Y. X. Liu, Inner Mongolia University42 Output controllability ? The system is complete output controllability if and only if the m(n+1)r matrix DBCABCACABCB 12n L be of rank m, or contain m linearly independent column vectors. 2004-3-16Y. X. Liu, Inner Mongolia University43 State observability 1 ? The system is complete observability that this requires the rank of the n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论