会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

外文翻译--三自由度并联机器人精度分析 英文版.pdf外文翻译--三自由度并联机器人精度分析 英文版.pdf -- 5 元

宽屏显示 收藏 分享

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

Abstractincreaseinertiaanddecreaseoperatingspeed–activejointerrors,comingfromthefiniteresolutionoftheencoders,sensorerrors,andcontrolerrors.Correspondingauthor.Emailaddressilian.bonevetsmtl.caI.A.Bonev.Availableonlineatwww.sciencedirect.comMechanismandMachineTheory432008445–458www.elsevier.com/locate/mechmtMechanismandMachineTheory0094114X/seefrontmatterC2112007ElsevierLtd.Allrightsreserved.Parallelrobotsareincreasinglybeingusedforprecisionpositioning,andanumberofthemareusedasthreedegreeoffreedom3DOFplanaralignmentstages.Clearly,insuchindustrialapplications,accuracyisoftheutmostimportance.Therefore,simpleandfastmethodsforcomputingtheaccuracyofagivenrobotdesignareneededinordertousethemindesignoptimizationproceduresthatlookformaximumaccuracy.Errorsinthepositionandorientationofaparallelrobotareduetoseveralfactors–manufacturingerrors,whichcanhoweverbetakenintoaccountthroughcalibration–backlash,whichcanbeeliminatedthroughproperchoiceofmechanicalcomponents–compliance,whichcanalsobeeliminatedthroughtheuseofmorerigidstructuresthoughthiswouldThreedegreeoffreedomplanarparallelrobotsareincreasinglybeingusedinapplicationswhereprecisionisoftheutmostimportance.Clearly,methodsforevaluatingtheaccuracyoftheserobotsarethereforeneeded.Theaccuracyofwelldesigned,manufactured,andcalibratedparallelrobotsdependsmostlyontheinputerrorssensorandcontrolerrors.Dexterityandothersimilarperformanceindiceshaveoftenbeenusedtoevaluateindirectlytheinfluenceofinputerrors.However,industryneedsapreciseknowledgeofthemaximumorientationandpositionoutputerrorsatagivennominalconfiguration.Anintervalanalysismethodthatcanbeadaptedforthispurposehasbeenproposedintheliterature,butgivesnokinematicinsightintotheproblemofoptimaldesign.Inthispaper,asimplermethodisproposedbasedonadetailederroranalysisof3DOFplanarparallelrobotsthatbringsvaluableunderstandingoftheproblemoferroramplification.C2112007ElsevierLtd.Allrightsreserved.KeywordsParallelmechanismsAccuracyDexterityPerformanceevaluationErroranalysis1.IntroductionAccuracyanalysisof3DOFplanarparallelrobotsSe´bastienBriota,IlianA.Bonevb,aDepartmentofMechanicalEngineeringandControlSystems,NationalInstituteofAppliedSciencesINSA,Rennes,FrancebDepartmentofAutomatedManufacturingEngineering,E´coledetechnologiesupe´rieureE´TS,Montreal,CanadaReceived21September2006receivedinrevisedform19March2007accepted6April2007Availableonline4June2007doi10.1016/j.mechmachtheory.2007.04.002mostonepassiveprismaticjointinaleg.Themethodisillustratedontwopracticaldesigns1.A3RPRplanarparallelrobot.ThisrobotistheplanarprojectionofthePAMINSArobot6andthe446S.Briot,I.A.Bonev/MechanismandMachineTheory432008445–458designparametersarethoseoftheprototypemanufacturedatINSAofRennes,France.2.Aplanar3PRRrobot7.AprecisionparallelrobotbasedonthisdesignhasbeendevelopedintheTechnicalUniversityofBraunscheig,inGermany8.Theremainderofthispaperisorganizedasfollows.Section2brieflyoutlinesthemathematicaltheoremsusedinthispaper.Section3presentsthemethodusedfortheanalysisoftheorientationandpositionerrors.Finally,Section4coversseveralnumericalexamples,andconclusionsaregiveninthelastsection.Therefore,aspointedoutbyMerlet1,activejointerrorsinputerrorsarethemostsignificantsourceoferrorsinaproperlydesigned,manufactured,andcalibratedparallelrobot.Inthispaper,weaddresstheproblemofcomputingtheaccuracyofaparallelrobotinthepresenceofactivejointerrorsonly.Inthebalanceofthepaper,thetermaccuracywillthereforerefertothepositionandorientationerrorsofaparallelrobotthatissubjectedtoactivejointerrorsonly.Theclassicalapproachconsistsinconsideringthefirstorderapproximationthatmapstheinputerrortotheoutputerrordp¼Jdqð1Þwheredqrepresentsthevectoroftheactivejointinputerrors,dpthevectorofoutputerrorsandJistheJacobianmatrixoftherobot.However,thismethodwillgiveonlyanapproximationoftheoutputmaximumerror.Indeed,aswewillproveinthispaper,givenanominalconfigurationandsomeuncertaintyrangesfortheactivejointvariables,alocalmaximumpositionerrorandalocalmaximumorientationerrornotonlyoccuratdifferentsetsofactivejointvariablesingeneral,buttheseactivejointvariablesarenotnecessarilyallatthelimitsoftheiruncertaintyranges.Severalperformanceindiceshavebeendevelopedandusedtoroughlyevaluatetheaccuracyofserialandparallelrobots.Arecentstudy2reviewedmostoftheseperformanceindicesanddiscussedtheirinconsistencieswhenappliedtoparallelrobotswithtranslationalandrotationaldegreesoffreedom.Themostcommonperformanceindicesusedtoindirectlyoptimizetheaccuracyofparallelrobotsarethedexterityindex3,theconditionnumbers,andtheglobalconditioningindex4.However,inarecentstudyoftheaccuracyofaclassof3DOFplanarparallelrobots5,itwasdemonstratedthatdexterityhaslittletodowithrobotaccuracy,aswedefineit.Obviously,thebestaccuracymeasureforanindustrialparallelrobotwouldbethemaximumpositionandmaximumorientationerrorsoveragivenportionoftheworkspace1,5oratagivennominalconfiguration,givenactuatorinaccuracies.Ageneralmethodbasedonintervalanalysisforcalculatingcloseapproximationsofthemaximumoutputerroroveragivenportionoftheworkspacewasproposedrecentlyin1.Obviously,themaximumoutputerroroveragivenportionoftheworkspaceisthemostimportantinformationforadesigner.However,thismethodisrelativelydifficulttoimplement,givesnoinformationontheevolutionoftheaccuracyofthemanipulatorwithinitsworkspaceandgivesnokinematicinsightintotheproblemofoptimaldesign.Incontrast,averysimplegeometricmethodforcomputingtheexactvalueoftheaccuracyof3DOF3PRPplanarparallelrobotswasdescribedin5inthispaper,PandRstandforpassiveprismaticandrevolutejoins,respectively,whilePandRstandforactuatedprismaticandrevolutejoins,respectively.Thismethodproposestoreplacetheexistingdexteritymapsbymaximumpositionerrormapsandmaximumorientationerrormaps.Whilethismethodcoversthreeofthemostpromisingdesignsforprecisionparallelrobotsoneofwhichiscommercializedandtheothertwobuiltintolaboratoryprototypes,itdoesnotalwaysworkforother3DOFplanarparallelrobots.Thispapergeneralizesthemethodproposedin5byfollowingadetailedmathematicalproofwhichgivesusimportantinsightintotheaccuracyofplanarparallelrobots.Thepresentstudyconsidersonly3DOFthreeleggedplanarparallelrobotswithprismaticand/orrevolutejoints,oneactuatedjointperleg,andat2.MathematicalbackgroundAnalyzingthelocalmaximumpositionerrorandthelocalmaximumorientationerrorofaparallelrobot,inducedbyboundederrorsintheactivejointvariables,isbasicallystudying,onasetofclosedintervals,themaximaoffunctionsDXandD/,definedasDX¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxC0x0Þ2þðyC0y0Þ2qð2ÞD/¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið/C0/0Þ2qð3Þwherex0,y0and/0aretheCartesiancoordinatescorrespondingtothenominaldesiredplatformposepositionandorientationofthestudiedparallelrobot,andx,yand/aretheactualplatformcoordinates.Inthecaseofa3DOFplanarfullyparallelrobot,DXandD/arefunctionsofthreevariablestheactivejointvariablesoftherobottheinputs,whichwillbedenotedbyqiinthispaper,i1,2,3.Thus,wehavetofindthemaximaofDXandD/onthesetofintervalsqi2½qi0C0eqi0þeC138,whereqi0aretheactivejointvariablescorrespondingtothenominalposex0,y0,/0oftheplatformintheselectedworkingmode,i.e.,theselectedsolutiontotheinversekinematicsandeistheerrorboundontheactivejointvariablesFig.1.Tosimplifyourerroranalysis,wewillmakethepracticalassumptionthatthenominalconfigurationissufS.Briot,I.A.Bonev/MechanismandMachineTheory432008445–458447Fig.1.Inputerrorboundingbox.ficientlyfarfromType1andType2singularities.Type1singularities9areconfigurationswhereaparallelrobotlosesitsdesiredfunctionality–itlosesoneormoredegreesoffreedom.Thesearetheinternalandtheexternalboundariesofworkspace.Forthisreason,theusableworkspaceofanindustrialparallelrobotwillbeawayfromthesesingularities.Similarly,Type2singularities9areanotherkindofconfigurationswhereaparallelrobotlosesitsdesiredfunctionality–thistimeitlosescontrolofthemobileplatform.Furthermore,neartheseconfigurations,theoutputerrorincreasesexponentially.Forthesereasons,industrialparallelrobotsaredesignedtoexcludesuchsingularities.Therefore,wewillobviouslyperformourerroranalysisonlyforconfigurationsthataresufficientlyfarfromsingularities,i.e.,fornominalconfigurationsfromwhichtherobotcannotenterintosingularitywhiletheactivejointvariablesstaywithintheirerrorboundedintervals.Oncewehavemadethispracticalassumption,weaddresstheproblemoffindingtheglobalmaximaofDXandD/.Itiswellknownthatthemaximumofacontinuousmultivariablefunction,f,overagivensetofintervalscanbefoundbyanalysingtheHessianmatrix,Hh1q1fðq1q20þeq30þeÞh7q2fðq10þeq2q30C0eÞIfsuchFinTheseFinandDThesingularity–TheFig.coulddenotedcentre448S.Briot,I.A.Bonev/MechanismandMachineTheory432008445–458withintheintervalstudied.twistofthemobileplatform,whenlegsjandkj,k1,2,3,i5j5karefixed,isapuretranslation.2representsthemobileplatformofarobotlinkedtothreeactuatedlegs,throughrevolutejointsthesebeprismaticjointsaswell.EachlegappliesawrenchRionthemobileplatform,whosecenterisbyP.TheintersectionpointO3ofthewrenchesR1andR2representstheinstantaneousrotationiiThesederivativesareequaltozeroifo//oqi0orif/C0/00.Obviously,however,amaximumcanexistonlyifo//oqi0.Fora3DOFplanarparallelrobot,twodifferentsituationscorrespondtotheconditiono//oqi0–TherobotisataType1singularity.However,wealreadyassumedthattherobotcannotenteraType1partialderivativesofD/2aregivenasoðD/2Þoq¼2o/oqð/C0/0Þð5Þ3.Analysisoftheorientationandpositionerrors3.1.Maximumorientationerrorh6q2fðq10C0eq2q30þeÞh12q3fðq10C0eq20C0eq3Þpointsexist,wewillcallthemmaximaofthethirdkind.ally,theglobalmaximumoffcouldalsobeononeoftheeightcornersoftheinputerrorboundingbox.eightpointswillbereferredtoasextremaofthefourthkind.dingtheglobalmaximaoffunctionsDXandD/isequivalenttofindingthemaximaoffunctionsDX2/2.Inthenextsection,wewillstudytheextremaofthefunctionsDX2andD/2.h2q1fðq1q20þeq30C0eÞh8q2fðq10C0eq2q30C0eÞh3q1fðq1q20C0eq30þeÞh9q3fðq10þeq20þeq3Þh4q1fðq1q20C0eq30C0eÞh10q3fðq10þeq20C0eq3Þh5q2fðq10þeq2q30þeÞh11q3fðq10C0eq20þeq3Þ22310235121230g3ðq1q3Þfðq1q20þeq3Þg6ðq1q2Þfðq1q2q30C0eÞIfsuchpointsexist,wewillcallthemmaximaofthesecondkind.Theglobalmaximumoffcouldalsobeontheedgesoftheinputerrorboundingbox.Thistime,wehavetostudythemaximaoftwelveunivariatefunctionsg1ðq2q3Þfðq10þeq2q3Þg4ðq1q3Þfðq1q20C0eq3ÞgðqqÞfðqC0eqqÞgðqqÞfðqqqþeÞH¼o2foq21o2foq1oq2o2foq1oq3o2foq22o2foq2oq3symo2foq23266664377775ð4ÞUsingthisHessianmatrix,thesetofvariablesq1m,q2m,q3m,whereqim2½qi0C0eqi0þeC138,leadstoamaximumoffifofoqiðq1mq2mq3mÞ¼0andHisnegativedefinite.Ifsuchapointexistsq1m,q2m,q3m,wewillcallitamaximumofthefirstkind.TheglobalmaximumoffcouldalsobeonthefacesoftheinputerrorboundingboxshowninFig.1.Thistime,wehavetostudythemaximaofsixfunctionsoftwovariableseach,definedasofthemobileplatformwhenactuators1and2arefixedandthethirdactuatorismoving.Thus,if
编号:201311171528156833    大小:1.25MB    格式:PDF    上传时间:2013-11-17
  【编辑】
5
关 键 词:
教育专区 外文翻译 精品文档 外文翻译
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

4.0
 
(2人评价)
浏览:81次
英文资料库上传于2013-11-17

官方联系方式

客服手机:13961746681   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

教育专区   外文翻译   精品文档   外文翻译  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5