




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
英文原文AEnvelopeMethodofGearingFollowingStosic1998,screwcompressorrotorsaretreatedhereashelicalgearswithnonparallelandnonintersecting,orcrossedaxesaspresentedatFig.A.1.x01,y01andx02,y02arethepointcoordinatesattheendrotorsectioninthecoordinatesystemsfixedtothemainandgaterotors,asispresentedinFig.1.3.istherotationanglearoundtheXaxes.Rotationoftherotorshaftisthenaturalrotormovementinitsbearings.Whilethemainrotorrotatesthroughangle,thegaterotorrotatesthroughangle=r1w/r2w=z2/z1,whererwandzarethepitchcircleradiiandnumberofrotorlobesrespectively.Inadditionwedefineexternalandinternalrotorradii:r1e=r1w+r1andr1i=r1wr0.ThedistancebetweentherotoraxesisC=r1w+r2w.pistherotorleadgivenforunitrotorrotationangle.Indices1and2relatetothemainandgaterotorrespectively.Fig.A.1.CoordinatesystemofhelicalgearswithnonparallelandnonintersectingAxesTheprocedurestartswithagiven,orgeneratingsurfacer1(t,)forwhichameshing,orgeneratedsurfaceistobedetermined.Afamilyofsuchgener-atedsurfacesisgiveninparametricformby:r2(t,),wheretisaproleparameterwhileandaremotionparameters.r1=r1(t,)=x1,y1,z1=x01cos-y01sin,x01sin+y01cos,p1(A,.1)0,111tytxtr=0,cossin,sincos0101011tytxtytx(A.2)0,0,01010111xyyxr(A.3)cossin,sincos,),(1111122222zyzyCxzyxtrr202020202,sinsin,sincospyxyx(A.4)2020202022222,sincos,sinsin,pyxyxpxyrsin)(cos,cos)(sin,cossin121211CxpCxpyp(A.5)Theenvelopeequation,whichdeterminesmeshingbetweenthesurfacesr1andr2:0222rrtr(A.6)togetherwithequationsforthesesurfaces,completesasystemofequations.Ifageneratingsurface1isdenedbytheparametert,theenvelopemaybeusedtocalculateanotherparameter,nowafunctionoft,asameshingconditiontodefineageneratedsurface2,nowthefunctionofbothtand.Thecrossproductintheenvelopeequationrepresentsasurfacenormalandr2istherelative,slidingvelocityoftwosinglepointsonthesurfaces1and2whichtogetherformthecommontangentialpointofcontactofthesetwosurfaces.Sincetheequalitytozeroofascalartripleproductisaninvariantpropertyundertheappliedcoordinatesystemandsincetherelativevelocitymaybeconcurrentlyrepresentedinbothcoordinatesystems,aconvenientformofthemeshingconditionisdenedas:0211111rrtrrrtr(A.7)Insertionofpreviousexpressionsintotheenvelopeconditiongives:tyytxxppxC1111211cot)(0)cot(12111txCptypp(A.8)Thisisappliedheretoderivetheconditionofmeshingactionforcrossedhelicalgearsofuniformleadwithnonparallelandnonintersectingaxes.Themethodconstitutesageargenerationprocedurewhichisgenerallyapplicable.Itcanbeusedforsynthesispurposesofscrewcompressorrotors,whichareelectivelyhelicalgearswithparallelaxes.Formedtoolsforrotormanufacturingarecrossedhelicalgearsonnonparallelandnonintersectingaxeswithauniformlead,asinthecaseofhobbing,orwithnoleadasinformedmillingandgrinding.Templatesforrotorinspectionarethesameasplanarrotorhobs.Inallthesecasesthetoolaxesdonotintersecttherotoraxes.Accordinglythenotespresenttheapplicationoftheenvelopemethodtoproduceameshingconditionforcrossedhelicalgears.Thescrewrotorgearingisthengivenasanelementaryexampleofitsusewhileaprocedureforformingahobbingtoolisgivenasacomplexcase.Theshaftangle,centredistanceC,andunitleadsoftwocrossedhelicalgears,p1andp2arenotinterdependent.Themeshingofcrossedhelicalgearsisstillpreserved:bothgearrackshavethesamenormalcrosssectionprole,andtherackhelixanglesarerelatedtotheshaftangleas=r1+r2.Thisisachievedbytheimplicitshiftofthegearracksinthexdirectionforcingthemtoadjustaccordinglytotheappropriaterackhelixangles.Thiscertainlyincludesspecialcases,likethatofgearswhichmaybeorientatedsothattheshaftangleisequaltothesumofthegearhelixangles:=1+2.Furthermoreacentredistancemaybeequaltothesumofthegearpitchradii:C=r1+r2.Pairsofcrossedhelicalgearsmaybewitheitherbothhelixanglesofthesamesignoreachofoppositesign,leftorrighthanded,dependingonthecombinationoftheirleadandshaftangle.Themeshingconditioncanbesolvedonlybynumericalmethods.Forthegivenparametert,thecoordinatesx01andy01andtheirderivativesx01tandy01tareknown.Aguessedvalueofparameteristhenusedtocalculatex1,y1,x1tandy1t.Arevisedvalueofisthenderivedandtheprocedurerepeateduntilthedifferencebetweentwoconsecutivevaluesbecomessufficientlysmall.Forgiventransversecoordinatesandderivativesofgear1prole,canbeusedtocalculatethex1,y1,andz1coordinatesofitshelicoidsurfaces.Thegear2helicoidsurfacesmaythenbecalculated.Coordinatez2canthenbeusedtocalculateandnally,itstransverseprolepointcoordinatesx2,y2canbeobtained.Anumberofcasescanbeidentiedfromthisanalysis.(i)When=0,theequationmeetsthemeshingconditionofscrewmachinerotorsandalsohelicalgearswithparallelaxes.Forsuchacase,thegearhelixangleshavethesamevalue,butoppositesignandthegearratioi=p2/p1isnegative.Thesameequationmayalsobeappliedforthegen-erationofarackformedfromgears.Additionallyitdescribestheformedplanarhob,frontmillingtoolandthetemplatecontrolinstrument.122AEnvelopeMethodofGearing(ii)Ifadiscformedmillingorgrindingtoolisconsidered,itissuffcienttoplacep2=0.Thisisasingularcasewhentoolfreerotationdoesnotaffectthemeshingprocess.Therefore,areversetransformationcannotbeobtaineddirectly.(iii)Thefullscopeofthemeshingconditionisrequiredforthegenerationoftheproleofaformedhobbingtool.Thisisthereforethemostcompli-catedtypeofgearwhichcanbegeneratedfromit.BReynoldsTransportTheoremFollowingHanjalic,1983,ReynoldsTransportTheoremdenesachangeofvariableinacontrolvolumeVlimitedbyareaAofwhichvectorthelocalnormalisdAandwhichtravelsatlocalspeedv.Thiscontrolvolumemay,butneednotnecessarilycoincidewithanengineeringorphysicalmaterialsystem.Therateofchangeofvariableintimewithinthevolumeis:vVdVtt(B.1)Therefore,itmaybeconcludedthatthechangeofvariableinthevolumeViscausedby:changeofthespecicvariablem/intimewithinthevolumebecauseofsources(andsinks)inthevolume,tdVwhichiscalledalocalchangeandmovementofthecontrolvolumewhichtakesanewspacewithvariableinitandleavesitsoldspace,causingachangeintimeofforv.dAandwhichiscalledconvectivechangeTherstcontributionmayberepresentedbyavolumeintegral:.dVtV(B.2)whilethesec
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全生产的核心要素
- 2025年重庆市南川三校联盟物理高二第二学期期末学业水平测试试题含解析
- 吉林省长春市榆树市2025年高二物理第二学期期末学业水平测试试题含解析
- 2025年新疆高一物理第二学期期末达标检测试题含解析
- 中山市重点中学2025年物理高一第二学期期末调研试题含解析
- 2025年浙南名校联盟物理高一第二学期期末综合测试试题含解析
- 2025届江苏省苏州市陆慕高级中学高一物理第二学期期末教学质量检测试题含解析
- 2025届安徽省三人行名校联盟物理高二第二学期期末达标检测试题含解析
- 仓储部个人年终工作总结
- 人事管理年度工作总结
- 2025年中小学暑假安全教育主题家长会 课件
- 2025年佛山市南海区图书馆招聘题库带答案分析
- 医院职业暴露医务人员锐器伤登记表
- 学与教的心理学第6版(师范专业心理学)PPT完整全套教学课件
- 甲状腺相关性眼病的诊治进展课件
- 小升初易错成语总结
- 邮轮基础英语PPT全套教学课件
- 初一语文现代文阅读题及答案
- GMP质量管理体系文件 玻璃器皿检定规程
- 三年级英语阅读理解(打印)
- GB/T 4169.19-2006塑料注射模零件第19部分:浇口套
评论
0/150
提交评论