会员注册 | 登录 | 微信快捷登录 支付宝快捷登录 QQ登录 微博登录 | 帮助中心 人人文库renrendoc.com美如初恋!
站内搜索 百度文库

热门搜索: 直缝焊接机 矿井提升机 循环球式转向器图纸 机器人手爪发展史 管道机器人dwg 动平衡试验台设计

外文翻译--用区间法解决正向运动学中Gough类型的并联机构问题.pdf外文翻译--用区间法解决正向运动学中Gough类型的并联机构问题.pdf -- 5 元

宽屏显示 收藏 分享

页面加载中... ... 广告 0 秒后退出

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

J.P.MerletINRIASophiaAntipolis,FranceSolvingtheForwardKinematicsofaGoughTypeParallelManipulatorwithIntervalAnalysisAbstractWeconsiderinthispaperaGoughtypeparallelrobotandwepresentanefficientalgorithmbasedonintervalanalysisthatallowsustosolvetheforwardkinematics,i.e.,todetermineallthepossibleposesoftheplatformforgivenjointcoordinates.Thisalgorithmisnumericallyrobustasnumericalroundofferrorsaretakenintoaccounttheprovidedsolutionsareeitherexactinthesensethatitwillbepossibletorefinethemuptoanarbitraryaccuracyortheyareflaggedonlyasapossiblesolutionaseitherthenumericalaccuracyofthecomputationdoesnotallowustoguaranteethemortherobotisinasingularconfiguration.Itallowsustotakeintoaccountphysicalandtechnologicalconstraintsontherobotforexample,limitedmotionofthepassivejoints.Anotheradvantageisthat,assumingrealisticconstraintsonthevelocityoftherobot,itiscompetitiveintermofcomputationtimewitharealtimealgorithmsuchastheNewtonscheme,whilebeingsafer.KEYWORDSforwardkinematics,parallelrobot1.Introduction1.1.RobotGeometryInthispaperweconsiderasixdegreesoffreedom6DOFparallelmanipulatorFigure1consistingofafixedbaseplateandamobileplateconnectedbysixextensiblelinks.LegiisattachedtothebasewithaballandsocketjointwhosecenterisAiwhileitisattachedtothemovingplatformwithauniversaljointwhosecenterisBi.ThelengthofthelegsthedistancebetweenAiandBiwillbedenotedbyρi.AreferenceframeA1,x,y,zisattachedtothebaseandamobileframeB1,xr,yr,zrisattachedtothemovingplatform.TheInternationalJournalofRoboticsResearchVol.23,No.3,March2004,pp.221235,DOI10.1177/0278364904039806©2004SagePublications1.2.TheForwardKinematicsProblemTheforwardkinematicsFKproblemmaybestatedasbeinggiventhesixleglengths,findthecurrentposeScoftheplatform,i.e.,theposeoftherobotwhentheleglengthshavebeenmeasured.Althoughitmayseemthatthisproblemhasbeenaddressedinnumerousworks,ithasneverbeenfullysolved.Indeed,aswewillsee,allauthorshaveaddressedasomewhatdifferentalthoughrelatedproblemPbeinggiventhesixleglengths,findallthenpossibleposesS1{S1,...,Sn}oftheplatform.ItmaybeacceptedthatsolvingPisthefirststepforsolvingtheFKproblemassoonassomemethodallowsustodeterminewhichsolutionSjinthesolutionsetofPisthecurrentposeScoftherobot.Unfortunately,nosuchmethodisknowntodate,evenforplanarparallelrobots.ThispaperwillalsoaddressthePproblem,althoughwewillbeabletotakeintoaccount,duringthecalculation,realisticconstraintsontherobotmotionthatmayreducethenumberofsolutions.ProblemPisnowconsideredasaclassicalprobleminkinematicsandisalsousedinothercommunitiesasadifficultbenchmark.Raghavan1991andRongaandVust1992werethefirsttoestablishthattheremaybeupto40complexandrealsolutionstoPwhileHusty1996succeededinprovidingaunivariatepolynomialofdegree40thatallowsustodetermineallthesolutions.Dietmaier1998exhibitedconfigurationsforwhichtherewere40realsolutionposes.1.3.SolvingMethodfortheForwardKinematicsThemethodstraditionallyusedtosolvePmaybeclassifiedastheeliminationmethodthecontinuationmethodtheGröebnerbasismethod.221222THEINTERNATIONALJOURNALOFROBOTICSRESEARCH/March2004A1A2A3A4A5A6B1B2B3B4B5B6COxyzyrzrxrFig.1.Goughplatform.Allthesemethodsassumeanalgebraicformulationoftheproblemwithnunknowns,x1,...,xn.Thesemethodswillbedescribedintuitivelywithouttryingtoberigorous.IntheeliminationmethodInnocenti2001LeeandShim2001aeachequationofthesystemisexpressedasalinearequationintermofmonomialsproducttextxi11...xinnincludingtheconstantmonomial1inwhichoneoftheunknowns,xk,issupposedtobeconstanti.e.,thecoefficientsoftheequationsarefunctionsofxk.AdditionalequationsareobtainedbymultiplyingtheinitialequationsbyamonomialuntilweobtainasquaresystemoflinearequationsthatcanbeexpressedinmatrixformasAxkX01whereXisasetofmonomialsincludingtheconstantmonomial1.Duetothisconstantmonomial,theabovesystemhasasolutiononlyif|Axk|0,whichisaunivariatepolynomialPeinxk.Aftersolvingthispolynomial,abacktrackmechanismallowsustodeterminealltheotherunknownsforeachrootofthepolynomialPe.Themainweaknessofthismethodisthecalculationof|A|usuallyAisaratherlargematrixanditsdeterminantcannotbecalculatedinclosedform.Mostauthorsproposetouseanumericalmethodtoevaluatethecoefficientsofthepolynomial|A|thedeterminantofordern,whichisalinearfunctionofthepolynomialcoefficients,iscalculatednumericallyforn1valuesofxkandthereforethecoefficientscanbeobtainedbysolvingasystemofn1linearequations.However,suchaprocedureisnumericallyunstableandhencethereisnoguaranteeofthecorrectnessofthesolutions.AneliminationmethodhasbeenusedbyHusty1996toobtaina40thorderpolynomialbutusingonlysymboliccomputationandacarefuleliminationprocessthatguaranteethatweobtaintheexactpolynomialcoefficientsunfortunately,thisprocedureseemstobedifficulttoautomate.TosolveasystemofequationsFX0,thecontinuationmethodRaghavan1991SreenivasanandNanua1992LiuandYang1995Wampler1996usesanauxiliarysystemGXF1−λF1−F0,whereF1isasystemsimilartoF,inthesensethatithasatleastthesamenumberofsolutionsasF,ofwhichallthesolutionsareknownandλisascalar.Whenλisequalto0,GF1andconsequentlythesolutionsofGareknown.Thesesolutionsareusedasaninitialguesstosolve,usingaNewtonscheme,anewversionofGobtainedforλepsilon1whereepsilon1hasasmallvalue.Thisprocessisrepeatedforλ2epsilon1usingthesolutionsofthepreviousrunasaninitialguessandsoonuntilλ1forwhichGF.Inotherwords,startingfromasystemwithknownsolutionswefollowthesolutionbranchesofasystemthatslowlyevolvestowardF.ThemainweaknessofthisapproachisthatitisnecessarytofollowalargenumberofbranchestofindallthesolutionsofF.Inourcase,F1hastohaveatleast40solutionsandhence40brancheswillbefollowed,someofwhichwillvanishiftheFKproblemhaslessthan40solutions.Furthermore,numericalrobustnessisdifficulttoensureifasingularityisencounteredwhenfollowingthebranches.IntheGröebnerbasisapproach,thepropertyisusedthatthesolutionsofanyalgebraicsystemFarealsosolutionsofvariousothersystemsofequationsinsomeotherunknownsyi.Amongallthesesystems,oneofthemhasthepropertyofbeingtriangular,i.e.,thesystemhasafirstequationinoneunknowny1,thesecondequationhasonlyy1,y2asunknownsandsoon,untilthelastequationwithunknownsy1,...,yn.Henceallthesolutionsofthissystemcanbeobtainedbysolvinginsequencethefirstequation,thenthesecondandsoon.SuchatriangularsystemcanbeobtainedbyusingtheBuchbergeralgorithmLazard1992FaugèreandLazard1995.Althoughthismethodiscurrentlythefastesttosolveinaguaranteedmanner,theFKproblemusingtheFGbandtheRealSolvingalgorithmsofFaugère1andRouillier1995,2003thisapproachcanonlybeusedwhenthecoefficientsoftheequationsarerationalinwhichcasetheresultsarecertifiedanditsimplementationinvolvestheuseoflargeintegers.2.SolvingwithIntervalAnalysis2.1.IntervalAnalysisIntervalanalysisisanalternativenumericalmethodthatcanbeusedtodetermineallthesolutionstoasystemofequationsandinequalitiessystemswithinagivensearchspace.1.Seehttp//wwwcalfor.lip6.fr/∼jcf/index.html.Merlet/SolvingtheForwardKinematics223AnintervalXisdefinedasthesetofrealnumbersxverifyingx≤x≤x.ThewidthwXofanintervalXisthequantityx−xwhilethemidpointMXoftheintervalisxx/2.ThemignitudemagnitudeofanintervalXisthesmallesthighestvalueof|x|,|x|.ApointintervalXisobtainedifxx.Aboxisatupleofintervalsanditswidthisdefinedasthelargestwidthofitsintervalmembers,whileitscenterisdefinedasthepointwhosecoordinatesarethemidpointoftheranges.LetfbearealvaluedfunctionofnunknownsX{x1,...,xn}.AnintervalevaluationFoffforgivenranges{X1,...,Xn}fortheunknownsisanintervalYsuchthat∀X{x1,...,xn}∈X{X1,...,Xn}Y≤fX≤Y.2Inotherwords,Y,YarelowerandupperboundsforthevaluesoffwhentheunknownsarerestrictedtoliewithintheboxX.TherearenumerouswaystocalculateanintervalevaluationofafunctionHansen1992Moore1979.ThesimplestisthenaturalevaluationinwhichallthemathematicaloperatorsinfaresubstitutedbytheirintervalequivalenttoobtainF.Forexample,theclassicaladditionissubstitutedbyanintervaladditiondefinedasX1X2x1x2,x1x2.Intervalequivalentsexistforalltheclassicalmathematicaloperatorsandhenceintervalarithmeticsallowsustocalculateanintervalevaluationformostnonlinearexpressions,whetheralgebraicornot.Forexample,iffxxsinx,thentheintervalevaluationoffforx∈1.1,2canbecalculatedasF1.1,21.1,2sin1.1,21.1,20.8912,11.9912,3.Intervalevaluationexhibitsinterestingproperties,asfollows.1.If0negationslash∈FX,thenthereisnovalueoftheunknownsintheboxXsuchthatfX0.Inotherwords,theequationfXhasnorootintheboxX.2.TheboundsoftheintervalevaluationFusuallyoverestimatetheminimumandmaximumofthefunctionovertheboxX,buttheboundsofFareexactlytheminimumandmaximumifthereisonlyoneoccurrenceofeachunknowninfPropertyA.3.Intervalarithmeticscanbeimplementedtakingintoaccountroundofferrors.Forexample,theintervalevaluationoffx/3whenXisthepointinterval1,1willbetheintervalα1,α2whereα1,α2aretheclosestfloatingpointnumbers,respectivelylowerandgreaterthan0.3333....Therearenumerousintervalarithmeticspackagesimplementingthisproperty.OneofthemostwellknownisBIAS/Profil2usingtheCdoubleforintervalrepresentation.However,apromisingnewpackageisMPFIRevolandRouillier2002,basedonthemultiprecisionsoftwareMPFRdevelopedbytheSPACESproject3,inwhichtheintervalisrepresentedbyanumberwithanarbitrarynumberofdigits.2.2.BasicSolvingAlgorithmIntervalanalysisbasedalgorithmshavebeenusedinroboticsforsolvingtheinversekinematicofserialrobotsKiyoharu,Ohara,andHiromasa2001Tagawaetal.1999andparallelrobotsFKCastellet1998Didrit,Petitot,andWalter1998Jaulinetal.2001,workspaceanalysisChablat,Wenger,andMerlet2002Merlet1999,singularitydetectionMerletandDaney2001,evaluatingthereliabilityofparallelrobotsCarrerasetal.1999,optimalplacementofrobotsTagawaetal.2001,mobilerobotlocalizationBouvetandGarcia2001andtrajectoryplanningPiazziandVisioli1997.However,intervalanalysisisamorecomplexmethodthanmaybethoughtatafirstglanceandwewillpresentinthispapervariousimprovementsthathaveadrasticinfluenceontheefficiency.Westartwiththemostbasicsolvingalgorithmthatmaybederivedfromthepropertiesofintervalarithmetics.LetB0{X1,...,Xn}beaboxandf{f1X,...,fnX}asetofequationstobesolvedwithinB0.AlistLwillcontainasetofboxesandinitiallyL{B0}.Anindexi,initializedto0,willindicatewhichboxBiinLiscurrentlybeingprocessed,whilenwilldenotethenumberofboxesinthelist.TheintervalevaluationofthefunctionfjfortheboxBiwillbedenotedFjBi.Athresholdepsilon1willbeusedand,ifthewidthoftheintervalevaluationofallthefunctionsforaboxBiislowerthanepsilon1andincludes0,thenBiwillbeconsideredasasolutionofthesystem.Thealgorithmproceedalongthefollowingsteps.1.Ifin,thenreturntothesolutionlist.2.IfatleastoneFjBiexistssuchthat0negationslash∈FjBi,thenii1andgoto1.3.If∀j∈1,n0∈FjBiandwFjBi≤epsilon1,thenstoreBiinthesolutionlist,ii1andgoto1.4.SelecttheunknownkwhoseintervalhasthelargestwidthinBi.BisectitsintervalinthemiddlepointandcreatetwonewboxesfromBias{X1,...,Xk−1,Xk,XkXk/2,...,Xn}and{X1,...,Xk−1,XkXk/2,Xk,...,Xn}.StorethesetwoboxesasBn1,Bn2,nn2,ii1andgoto1.2.http//www.ti3.tuharburg.de/Software/PROFILEnglisch.html.3.http//www.mpfr.org.224THEINTERNATIONALJOURNALOFROBOTICSRESEARCH/March2004Notethatthestoragemethodusedherefortheboxesisnotveryefficientasfarasmemorymanagementisconcerned.AfirstimprovementistosubstitutetheboxBibyoneofthetwoboxesthatarecreatedwhenbisectingit.Asecondimprovement,denotedadepthfirststoragemode,istostorethesecondboxatpositioni1afterashiftoftheexistingboxes.ThisensuresthatthewidthofBiisalwaysdecreasinguntileithertheboxiseliminatedorasolutionisfound.Inthismode,forasystemofnequationsinnunknowns,thewidthofBiisatleastdividedby2afternbisection.IfthewidthoftheinitialboxB0isw0thenumberNofboxesthatareneededissuchthat2K/nw0/epsilon1andhenceNnlogw0/epsilon1/log2.Forexample,ifn9,w010andepsilon110−6,weobtainthatthenumberofboxesofLshouldbe210towhichwemustaddthememorytostorethesolutions.Hence,evenwithahighaccuracyforthesolutionandalargeinitialsearchspacethenecessarymemorystorageissmall.Asamatteroffact,thedescribedalgorithmwillusuallynotbeveryefficient,buttherearenumerouswaystoimproveitaswillbeshownlateron.However,notethatthereisaneasywaytoimprovethecomputationtimeofthebasicalgorithmindeed,wemaynoticethateachboxinLissubmittedtoaprocessingthatdoesnotdependupontheotherboxes.Henceitispossibletoimplementthealgorithminadistributedmanner.Amastercomputerwillsendtonslavecomputersthefirstnboxesinthelist.TheseslavecomputerswillindividuallyperformafewiterationsofthebasicalgorithmandwillsendbacktothemastertheremainingboxesinitsLlistifanyandthesolutionsithasfoundifany.ThemasterwillmanageagloballistLandperformafewiterationsofthebasicalgorithmifalltheslavesarebusy.WewilldiscusstheefficiencyofthedistributedimplementationintheExamplesections.3.EquationsfortheForwardKinematicsLetAiandBibetheattachmentpointsofthelegionthebaseandontheplatform,respectively.ThecoordinatesofAiinthereferenceframewillbedenotedxai,yai,zaiwhilethecoordinatesofBiinthesameframearexi,yi,zi.Withoutlackofgeneralitywemaychoosexa1ya1za10andya2za20.Notethatforagivenrobotandgivenleglengthsitisalwayspossibletochangethenumberingoftheleglengthsandwewillseethatthishasaninfluenceonthecomputationtimeofouralgorithm.TherearenumerouswaystowritetheequationsoftheinversekinematicswhichconstitutethesystemofequationstobesolvedfortheFKproblemaccordingtotheparametersthatareusedtorepresenttheposeoftheplatform.InthispaperaposeoftheplatformwillbedefinedeitherbythecoordinatesofthethreepointsB1,B2,B3assumedtobenotcollinearsuchatripletcanalwaysbefoundotherwisetherobotisalwayssingulariftheplatformisplanar,orbythecoordinatesofthefourpointsB1,B2,B3,B4inthegeneralcase.Thechosenpointswillbedenotedthereferencepointsofthesystem,andtheassociatedlegsthereferencelegs.Ifm,m∈3,4pointsareusedfordefiningtheposeoftheplatformthenforanyjinm1,6wehaveOBjkmsummationdisplayk1αkjOBk,3whereαkjareknownconstantssuchthatsummationtextkmk1αkj1.Afirstsetofequationsisobtainedbyexpressingtheleglengthsforthemchosenreferencelegsxj−xaj2yj−yaj2zj−zaj2ρ2j,j∈1,m,4whereρjistheknownleglength.Asecondsetofequationsisobtainedbywritingtheleglengthsforthelegsm1to6,usingthecoordinatesoftheBjpointsdefinedineq.3parenleftBiggimsummationdisplayi1αijxi−xajparenrightBigg2parenleftBiggimsummationdisplayi1αijyi−yajparenrightBigg2parenleftBiggimsummationdisplayi1αijzi−zajparenrightBigg2ρ2j,j∈m1,6.5ThethirdsetofequationsisobtainedbywritingthatthedistancebetweenanycoupleofreferencepointsB1,...,Bmisaknownquantityxi−xj2yi−yj2zi−zj2d2ij,i,j∈1,m,inegationslashj,6wheredijisthedistancebetweenthepointsBiandBj.Itmaybenotedthateqs.4,5and6areasetofdistanceequationswhichdescribethedistancebetweeneitherpointsinthethreedimensional3Dspaceorvirtualpoints,i.e.,pointswhosecoordinatesarealinearcombinationofreferencepointsherepointsBm1,...,B6arethevirtualpoints.Weendupwithasystemofn3mequationsinthe3munknownsxi,yi,zi.Itappearsthatforeachequationinthesystem4,5and6thereisonlyoneoccurrenceofeachunknown.Consequently,accordingtoPropertyAtheintervalevaluationofeachequationgivestheexactminimumandmaximumvaluesoftheequationsandthismotivatestheuseofsuchrepresentationoftheposeoftheplatform.Itmustbenoted,however,thatifm4wehavenotaminimalparametrizationofthesystemasonlythreepointsareneededtodefinetheposeoftheplatform.IndeedforpointBkwithkin4,6wehaveB1Bkµk1B1B2µk2B1B3µk3B1B2B1B3,7
编号:201311171652117497    大小:778.22KB    格式:PDF    上传时间:2013-11-17
  【编辑】
5
关 键 词:
教育专区 外文翻译 精品文档 外文翻译
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

当前资源信息

4.0
 
(2人评价)
浏览:6次
英文资料库上传于2013-11-17

官方联系方式

客服手机:13961746681   
2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   

相关资源

相关资源

相关搜索

教育专区   外文翻译   精品文档   外文翻译  
关于我们 - 网站声明 - 网站地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2015-2017 人人文库网网站版权所有
苏ICP备12009002号-5