通信原理实验指导书:实验四 振幅键控、移频键控、移相键控调制实验_第1页
通信原理实验指导书:实验四 振幅键控、移频键控、移相键控调制实验_第2页
通信原理实验指导书:实验四 振幅键控、移频键控、移相键控调制实验_第3页
通信原理实验指导书:实验四 振幅键控、移频键控、移相键控调制实验_第4页
通信原理实验指导书:实验四 振幅键控、移频键控、移相键控调制实验_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验四 振幅键控、移频键控、移相键控调制实验一、实验目的掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。掌握2ASK、2FSK、2DPSK信号的频谱特性。二、实验内容观察绝对码、相对码波形。观察2ASK、2FSK、2DPSK信号波形。观察2ASK、2FSK、2DPSK信号频谱。三、实验器材信号源模块数字调制模块频谱分析模块20M双踪示波器 一台频率计(选用) 一台四、实验原理调制信号为二进制序列时的数字频带调制称为二进制数值调制。由于被调载波

2、有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2ASK)、二进制移频键控(2FSK)、二进制移相键控(2PSK)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。2ASK调制原理。在振幅键控中载波幅度是随着基带信号而变化的。将载波在二进制基带信号1或0的控制下通或断,即用载波幅度的有无来代表信号中的“1”或者是“0”,这样就可以得到2ASK信号,这种二进制振幅键控方式称为通断键控(OOK)。2ASK信号典型的时域波形如图4-1所示,其时域数学表达式为: (41)式中,A为未调载波幅度,为载波角频率,为符合下列关系的二

3、进制序列的第n个码元: (42)综合式41和式42,令A1,则2ASK信号的一般时域表达式为: (43)式中,Ts为码元间隔,为持续时间 Ts/2,Ts/2 内任意波形形状的脉冲(分析时一般设为归一化矩形脉冲),而就是代表二进制信息的随机单极性脉冲序列。 图4-1 2ASK信号的典型时域波形为了更深入掌握2ASK信号的性质,除时域分析外,还应进行频域分析。由于二进制序列一般为随机序列,则的功率谱密度表达式为: (44)2ASK信号的双边功率谱密度表达式为: (45)式(45)表明,2ASK信号的功率谱密度由两个部分组成:(1)由经线性幅度调制所形成的双边带连续谱;(2)由被调载波分量确定的载频

4、离散谱。图4-2为2ASK信号的单边功率谱示意图。图4-2 2ASK信号的单边功率谱密度示意图对信号进行频域分析的主要目的之一就是确定信号的带宽。在不同应用场合,信号带宽有多种度量定义,但最常用和最简单的带宽定义是以功率谱主瓣宽度为度量的“谱零点带宽”,这种带宽定义特别适用于功率谱主瓣包含信号大部分功率的信号。显然,2ASK信号的谱零点带宽为 (Hz) (46)式中,Rs为二进制序列的码元速率,它与二进制序列的信息率(比特率)Rb(bit/s)在数值上相等。图4-3 2ASK调制电路原理图2ASK信号的产生方法比较简单。首先,因2ASK信号的特征是对载波的“通断键控”,用一个模拟开关作为调制载

5、波的输出通/断控制门,由二进制序列控制门的通断,1时开关导通;0时开关截止,这种调制方式称为通断键控法。其次,2ASK信号可视为S(t)与载波的乘积,故用模拟乘法器实现2ASK调制也是很容易想到的另一种方式,称其为乘积法。在这里,我们采用的是通断键控法,2ASK调制的基带信号和载波信号分别从“ASK基带输入”和“ASK载波输入”输入,其原理框图和电路原理图分别如图4-3。2FSK调制原理。2FSK信号是用载波频率的变化来表征被传信息的状态的,被调载波的频率随二进制序列0、1状态而变化,即载频为时代表传0,载频为时代表传1。显然,2FSK信号完全可以看成两个分别以和为载频、以和为被传二进制序列的

6、两种2ASK信号的合成。2FSK信号的典型时域波形如图4-4所示,其一般时域数学表达式为(47)式中,是的反码,即 图4-4 2FSK信号的典型时域波形因为2FSK属于频率调制,通常可定义其移频键控指数为 (48)显然,h与模拟调频信号的调频指数的性质是一样的,其大小对已调波带宽有很大影响。2FSK信号与2ASK信号的相似之处是含有载频离散谱分量,也就是说,二者均可以采用非相干方式进行解调。可以看出,当h1时,2FSK信号功率谱呈双峰状,此时的信号带宽近似为(Hz) (49)2FSK信号的产生通常有两种方式:(1)频率选择法;(2)载波调频法。由于频率选择法产生的2FSK信号为两个彼此独立的载

7、波振荡器输出信号之和,在二进制码元状态转换(或)时刻,2FSK信号的相位通常是不连续的,这会不利于已调信号功率谱旁瓣分量的收敛。载波调频法是在一个直接调频器中产生2FSK信号,这时的已调信号出自同一个振荡器,信号相位在载频变化时始终时连续的,这将有利于已调信号功率谱旁瓣分量的收敛,使信号功率更集中于信号带宽内。在这里,我们采用的是频率选择法,其调制原理框图如图4-5所示:图4-5 2FSK调制原理框图由图可知,从“FSK基带输入”输入的基带信号分成两路,1路经U404(LM339)反相后接至U405B(4066)的控制端,另1路直接接至U405A(4066)的控制端。从“FSK载波输入1”和“

8、FSK载波输入2”输入的载波信号分别接至U405A和U405B的输入端。当基带信号为“1”时,模拟开关U405A打开,U405B关闭,输出第一路载波;当基带信号为“0”时,U405A关闭,U405B打开,此时输出第二路载波,再通过相加器就可以得到2FSK调制信号。2DPSK调制原理。2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和相位载波分别代表传1和传0,其时域波形示意图如图4-6所示。设二进制单极性码为an,其对应的双极性二进制码为bn,则2PSK信号的一般时域数学表达式为: (410)其中:则(1510)式可变为: (411)图4-6 2PSK信号的典型时域波形由

9、(410)式可见,2PSK信号是一种双边带信号,比较(410)式于(43)式可知,其双边功率谱表达式与2ASK的几乎相同,即为: (412)2PSK信号的谱零点带宽与2ASK的相同,即(Hz) (413)我们知道,2PSK信号是用载波的不同相位直接去表示相应数字信号的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。这种现象常称为2PSK的“倒”现象,因此,实际中一般不采用2PSK方式,而采用差分移相(2DPSK)方式。2DPSK方式即是利用

10、前后相邻码元的相对载波相位值去表示数字信息的一种方式。例如,假设相位值用相位偏移x表示(x定义为本码元初相与前一码元初相之差),并设” ”则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息:00111001012DPSK信号相位:000000或: 0 0 0 0 0图4-7 2PSK与2DPSK波形对比图4-7为对同一组二进制信号调制后的2PSK与2DPSK波形。从图中可以看出,2DPSK信号波形与2PSK的不同。2DPSK波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。这说明,解调2DPSK信号时并不依赖于某一固定的载波相位参考值,只要前

11、后码元的相对相位关系不破坏,则鉴别这个相位关系就可以正确恢复数字信息,这就避免了2PSK方式中的“倒”现象发生。同时我们也可以看到,单纯从波形上看,2PSK与2DPSK信号时无法分辨的。这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看成是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。关于相对码的概念,请参考教材P139。2DPSK的调制原理与2FSK的调制原理类似,也是用二进制基带信号作为模拟开关的控制信号轮流选通不同相位的载波,完成2DPSK调制,其调制的基带信号和载波信号分别从“PSK基带输入”和“PSK载

12、波输入”输入,差分变换的时钟信号从“PSK-BS输入”点输入,其原理框图如图4-8所示: 图4-8 2DPSK调制原理框图五、实验步骤 将信号源模块、数字调制模块、频谱分析模块小心地固定在主机箱中,确保电源接触良好。插上电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的开关POWER1、POWER2,对应的发光二极管LED001、LED002、D400、D401、L1、L2发光,按一下信号源模块的复位键,三个模块均开始工作。ASK调制实验将信号源模块产生的码速率为15.625KHz的15位的伪随机NRZ码和64KHz的正弦波(幅度为3V左右)分别送入数字调制模块的信号输入点“ASK基带输

13、入”和“ASK载波输入”。以信号输入点“ASK基带输入”的信号为内触发源,用双踪示波器同时观察点“ASK基带输入”和点“ASK调制输出”的波形,并将这两点的信号送入频谱分析模块进行分析,观察其频谱。改变送入的基带信号和载波信号,重复上述实验。FSK调制实验将信号源模块产生的码速率为15.625KHz的15位的伪随机NRZ码和32KHz正弦波(幅度为3V左右)、64KHz的正弦波(幅度为3V左右)分别送入数字调制模块的信号输入点“FSK基带输入”、“FSK载波输入1”和“FSK载波输入2”。以信号输入点“FSK基带输入”的信号为内触发源,用双踪示波器同时观察点“FSK基带输入”和点“FSK调制输

14、出”的波形,并将这两点的信号送入频谱分析模块进行分析,观察其频谱。改变送入的基带信号和载波信号,重复上述实验。PSK调制实验将信号源模块的信号输出点“BS”与数字调制模块的信号输入点“PSK-BS输入”连接,将信号源模块产生的码速率为15.625KHz的15位的伪随机NRZ码和64KHz的正弦波(幅度为3V左右)分别送入数字调制模块的信号输入点“PSK基带输入”和“PSK载波输入”。以信号输入点“差分编码输出”的信号为内触发源,用双踪示波器同时观察点“PSK基带输入”与“差分编码输出”的波形。用双踪示波器同时观察点“差分编码输出”和点“PSK调制输出”的波形,并将这两点的信号送入频谱分析模块进行分析,观察其频谱。改变送入的基带信号和载波信号,重复上述实验。六、输入、输出点参考说明信号输入点参考说明ASK基带输入:ASK基带信号输入点。ASK载波输入:ASK载波信号输入点。FSK基带输入:FSK基带信号输入点。FSK载波输入1:FSK第一路载波信号输入点。FSK载波输入2:FSK第二路载波信号输入点。PSK基带输入:PSK基带信号输入点。PSK载波输入:PSK载波信号输入点。PSK-BS输入:PSK差分编码时钟输入点。信号输出点参考说明ASK调制输出:A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论