版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
迁移学习算法研究庄福振中国科学院计算技术研究所2016年4月18日TrainingDataClassifierUnseenData(…,long,T)good!Whatif…2传统监督机器学习(1/2)2023/2/1[fromProf.QiangYang]传统监督机器学习(2/2)32023/2/1传统监督学习同源、独立同分布两个基本假设标注足够多的训练样本在实际应用中通常不能满足!训练集测试集分类器训练集测试集分类器迁移学习42023/2/1实际应用学习场景HP新闻Lenovo新闻不同源、分布不一致人工标记训练样本,费时耗力迁移学习运用已有的知识对不同但相关领域问题进行求解的一种新的机器学习方法放宽了传统机器学习的两个基本假设迁移学习场景(1/4)52023/2/1迁移学习场景无处不在迁移知识迁移知识图像分类HP新闻Lenovo新闻新闻网页分类异构特征空间6Theappleisthepomaceousfruitoftheappletree,speciesMalusdomesticaintherosefamilyRosaceae...BananaisthecommonnameforatypeoffruitandalsotheherbaceousplantsofthegenusMusawhichproducethiscommonlyeatenfruit...Training:TextFuture:ImagesApplesBananas迁移学习场景(2/4)2023/2/1[fromProf.QiangYang]XinJin,FuzhenZhuang,SinnoJialinPan,ChangyingDu,PingLuo,QingHe:HeterogeneousMulti-taskSemanticFeatureLearningforClassification.CIKM2015:1847-1850.TestTestTrainingTrainingClassifierClassifier72.65%DVDElectronicsElectronics84.60%ElectronicsDrop!迁移学习场景(3/4)72023/2/1[fromProf.QiangYang]8DVDElectronicsBookKitchenClothesVideogameFruitHotelTeaImpractical!迁移学习场景(4/4)2023/2/1[fromProf.QiangYang]OutlineConceptLearningforTransferLearningConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningTransferLearningusingAuto-encodersTransferLearningfromMultipleSourceswithAutoencoderRegularizationSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders92023/2/1ConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningforTransferLearning102023/2/1IntroductionManytraditionallearningtechniquesworkwellonlyundertheassumption:Trainingandtestdatafollowthesamedistribution
Training(labeled)ClassifierTest(unlabeled)FromdifferentcompaniesEnterpriseNewsClassification:includingtheclasses“ProductAnnouncement”,“Businessscandal”,“Acquisition”,……Productannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsDifferentdistributionFail!11ConceptLearningforTransferLearning2023/2/1Motivation(1/3)ExampleAnalysis
Productannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsProductwordconceptLaserJet,printer,price,performanceThinkPad,ThinkCentre,price,performanceRelatedProductannouncementdocumentclass:12Sharesomecommonwords:announcement,price,performance…indicateConceptLearningforTransferLearning2023/2/1Motivation(2/3)ExampleAnalysis:
HPLaserJet,printer,price,performanceetal.LenovoThinkpad,Thinkcentre,price,performanceetal.Thewordsexpressingthesamewordconceptaredomain-dependent
13ProductProductannouncementwordconceptindicatesTheassociationbetweenwordconceptsanddocumentclassesisdomain-independent
ConceptLearningforTransferLearning2023/2/1Motivation(3/3)14Furtherobservations:Differentdomainsmayusesamekeywordstoexpressthesameconcept(denotedasidenticalconcept)Differentdomainsmayalsousedifferentkeywordstoexpressthesameconcept(denotedasalikeconcept)Differentdomainsmayalsohavetheirowndistinctconcepts(denotedasdistinctconcept)TheidenticalandalikeconceptsareusedasthesharedconceptsforknowledgetransferWetrytomodelthesethreekindsofconceptssimultaneouslyfortransferlearningtextclassificationConceptLearningforTransferLearning2023/2/1PreliminaryKnowledgeBasicformulaofmatrixtri-factorization:wheretheinputXistheword-documentco-occurrencematrix
denotesconceptinformation,mayvaryindifferentdomainsFdenotesthedocumentclassificationinformation
indeedistheassociationbetweenwordconceptsanddocumentclasses,mayretainstablecrossdomainsGS15ConceptLearningforTransferLearning2023/2/1Previousmethod-MTrickinSDM2010(1/2)SketchmapofMTrick
SourcedomainXs
FsGsFtGtTargetdomainXtSKnowledgeTransfer16ConceptLearningforTransferLearning2023/2/1Consideringthealikeconcepts MTrick(2/2)OptimizationproblemforMTrickG0isthesupervisioninformationtheassociationSissharedasbridgetotransferknowledge17ConceptLearningforTransferLearningDualTransferLearning(Longetal.,SDM2012),consideringidenticalandalikeconcepts2023/2/1TriplexTransferLearning(TriTL)(1/5)Furtherdividethewordconceptsintothreekinds:
18F1,identicalconcepts;F2,alikeconcepts;F3,distinctconceptsInput:ssourcedomainXr(1≤r≤s)withlabelinformation,ttargetdomainXr(s+1≤r≤s+t)WeproposeTriplexTransferLearningframeworkbasedonmatrixtri-factorization(TriTLforshort)
2023/2/1ConceptLearningforTransferLearningF1,S1andS2
aresharedasthebridgeforknowledgetransferacrossdomainsThesupervisioninformationisintegratedbyGr(1≤r≤s)insourcedomainsTriTL(2/5)OptimizationProblem
192023/2/1ConceptLearningforTransferLearningTriTL(3/5)Wedevelopanalternativelyiterativealgorithmtoderivethesolutionandtheoreticallyanalyzeitsconvergence 202023/2/1ConceptLearningforTransferLearningTriTL(4/5)Classificationontargetdomains When1≤r≤s,Grcontainsthelabelinformation,soweremainitunchangedduringtheiterations
whenxibelongstoclassj,thenGr(i,j)=1,elseGr(i,j)=0Aftertheiteration,weobtaintheoutputGr(s+1≤r≤s+t),thenwecanperformclassificationaccordingtoGr212023/2/1ConceptLearningforTransferLearningTriTL(5/5)AnalysisofAlgorithmConvergence Accordingtothemethodologyofconvergenceanalysisinthetwoworks[Leeetal.,NIPS’01]and[Dingetal.,KDD’06],thefollowingtheoremholds.Theorem(Convergence):Aftereachroundofcalculatingtheiterativeformulas,theobjectivefunctionintheoptimizationproblemwillconvergemonotonically.222023/2/1ConceptLearningforTransferLearning232023/2/1rec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacecomp.graphicscomp.sys.ibm.pc.hardwarecomp.sys.mac.hardwarecomp.windows.xtalk.politics.misctalk.politics.gunstalk.politics.mideasttalk.religion.miscrecscicomptalkDataPreparation(1/3)20Newsgroups Fourtopcategories,eachtopcategorycontainsfoursub-categories SentimentClassification,fourdomains:books,dvd,electronics,kitchenRandomlyselecttwodomainsassources,andtherestastargets,then6problemscanbeconstructed
ConceptLearningforTransferLearning242023/2/1rec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacerec+sci-baseballcrypySourcedomainautosspaceTargetdomainFortheclassificationproblemwithonesourcedomainandonetargetdomain,wecanconstruct144()
problemsDataPreparation(2/3)Constructclassificationtasks(TraditionalTL)ConceptLearningforTransferLearning252023/2/1Constructnewtransferlearningproblemsrec.autosrec.motorcyclesrec.baseballrec.hockeysci.cryptsic.electronicssci.medsci.spacerec+sci-baseballcrypyautosspacecomp.graphicscomp.sys.ibm.pc.hardwarecomp.sys.mac.hardwarecomp.windows.xtalk.politics.misctalk.politics.gunstalk.politics.mideasttalk.religion.misccomptalkautosgraphicsMoredistinctconceptsmayexist!DataPreparation(3/3)SourcedomainTargetdomainConceptLearningforTransferLearning262023/2/1ComparedAlgorithmsConceptLearningforTransferLearningTraditionallearningAlgorithmsSupervisedLearning:LogisticRegression(LR)[Davidetal.,00]SupportVectorMachine(SVM)[Joachims,ICML’99]Semi-supervisedLearning:TSVM[Joachims,ICML’99]TransferlearningMethods:CoCC[Daietal.,KDD’07],DTL[Longetal.,SDM’12]Classificationaccuracyisusedastheevaluationmeasure272023/2/1ExperimentalResults(1/3)ConceptLearningforTransferLearningSorttheproblemswiththeaccuracyofLRDegreeoftransferdifficultyeasierGenerally,thelowerofaccuracyofLRcanindicatethehardertotransfer,whilethehigheronesindicatetheeasiertotransferharder282023/2/1ExperimentalResults(2/3)ConceptLearningforTransferLearningComparisonsamongTriTL,DTL,MTrick,CoCC,TSVM,SVMandLRondatasetrecvs.sci(144problems)TriTLcanperformwelleventheaccuracyofLRislowerthan65%292023/2/1ExperimentalResults(3/3)ConceptLearningforTransferLearningResultsonnewtransferlearningproblems,weonlyselecttheproblems,whoseaccuraciesofLRarebetween(50%,55%](Onlyslightlybetterthanrandomclassification,thustheymightbemuchmoredifficult).Weobtain65problemsTriTLalsooutperformsallthebaselinesConclusionsExplicitlydefinethreekindsofwordconcepts,i.e.,identicalconcept,alikeconceptanddistinctconceptProposeageneraltransferlearningframeworkbasedonnonnegativematrixtri-factorization,whichsimultaneouslymodelthethreekindsofconcepts(TriTL)Extensiveexperimentsshowtheeffectivenessoftheproposedapproach,especiallywhenthedistinctconceptsmayexist302023/2/1ConceptLearningforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningConceptLearningforTransferLearning312023/2/1322023/2/1MotivationConceptLearningforTransferLearningProductannouncement:HP'sjust-releasedLaserJetProP1100printerandtheLaserJetProM1130andM1210multifunctionprinters,price…performance
...AnnouncementforLenovoThinkPad
ThinkCentre–price$150offLenovoK300desktopusingcouponcode...LenovoThinkPad
ThinkCentre–price$200offLenovoIdeaPadU450plaptopusing....theirperformanceHPnewsLenovonewsProductwordconceptLaserJet,printer,price,performanceThinkPad,ThinkCentre,price,performanceRelatedProductannouncementdocumentclass:Sharesomecommonwords:announcement,price,performance…indicateRetrospecttheexample
332023/2/1SomenotationsddocumentydocumentclasszwordconceptSomedefinitionse.g.,p(price|Product),p(LaserJet|Product,)wwordrdomaine.g,p(Product|Productannouncement)PreliminaryKnowledge(1/3)ConceptLearningforTransferLearning342023/2/1ConceptLearningforTransferLearningPreliminaryKnowledge(2/3)ProductLaserJet,printer,announcement,price,ThinkPad,ThinkCentre,announcement,priceProductannouncementp(w|z,r1)p(w|z,r2)p(z|y)p(w|z,r1)≠p(w|z,r2)E.g.,p(LaserJet|Product,HP)≠p(LaserJet|Product,Lenovo)p(z|y,r1)=p(z|y,r2)E.g.,p(Product|Productannoucement,HP)=p(Product|Productannoucement,Lenovo)Alikeconcept352023/2/1DualPLSA
(D-PLSA)Jointprobabilityoverallvariablesp(w,d)=p(w|z)p(z|y)p(d|y)p(y)GivendatadomainX,theproblemofmaximumloglikelihoodislogp(X;θ)=logΣz
p(Z,X;θ)
θ
includesalltheparametersp(w|z),p(z|y),p(d|y),p(y).Z
denotesallthelatentvariablesPreliminaryKnowledge(3/3)TheproposedtransferlearningalgorithmbasedonD-PLSA,denotedasHIDCConceptLearningforTransferLearning362023/2/1Identicalconceptp(w|za)p(za|y)AlikeconceptTheextensionandintensionaredomainindependentp(w|zb,r)p(zb|y)HIDC(1/3)Theextensionisdomaindependent,whiletheintensionisdomainindependentConceptLearningforTransferLearning372023/2/1Distinctconceptp(w|zc,r)p(zc|y,r)ThejointprobabilitiesofthesethreegraphicalmodelsHIDC(2/3)TheextensionandintensionarebothdomaindependentConceptLearningforTransferLearning382023/2/1Givens+t
datadomainsX={X1,…,Xs,Xs+1,…,Xs+t},withoutlossofgenerality,thefirstsdomainsaresourcedomains,andthelefttdomainsaretargetdomainsConsiderthethreekindsofconcepts:TheLog
likelihoodfunctionislogp(X;θ)=logΣz
p(Z,X;θ)
θ
includesallparametersp(w|za),p(w|zb,r),p(w|zc,r),p(za|y),p(zb|y),p(zc|y,r),p(d|y,r),p(y|r),p(r).HIDC(3/3)ConceptLearningforTransferLearning392023/2/1UsetheEMalgorithmtoderivethesolutionsEStep:ModelSolution(1/4)ConceptLearningforTransferLearning402023/2/1M
Step:ModelSolution(2/4)ConceptLearningforTransferLearning412023/2/1Semi-supervisedEMalgorithm:whenrisfromsourcedomains,thelabeledinformationp(d|y,r)isknownandp(y|r)
canbeinferedp(d|y,r)=1/ny,r,ifdbelongsyindomainr,ny,risthenumberofdocumentsinclassyindomainr,else
p(d|y,c)=0p(y|r)=ny,r/nr
,nr
isthenumberofdocumentsindomainr
whenrisfromsourcedomains,p(d|y,r)andp(y|r)keepunchangedduringtheiterations,whichsupervisetheoptimizingprocessModelSolution(3/4)ConceptLearningforTransferLearning422023/2/1ClassificationfortargetdomainsAfterweobtainthefinalsolutionsofp(w|za),p(w|zb,r),p(w|zc,r),p(za|y),p(zb|y),p(zc|y,r),p(d|y,r),p(y|r),p(r)Wecancomputetheconditionalprobabilities:
ThenthefinalpredictionisDuringtheiterations,alldomainssharep(w|za),p(za|y),p(zb|y),
whichactasthebridgeforknowledgetransferModelSolution(4/4)ConceptLearningforTransferLearning432023/2/1BaselinesComparedAlgorithmsSupervisedLearning:LogisticRegression(LG)[Davidetal.,00]SupportVectorMachine(SVM)[Joachims,ICML’99]Semi-supervisedLearning:TSVM[Joachims,ICML’99]TransferLearning:CoCC[Daietal.,KDD’07]CD-PLSA[Zhuangetal.,CIKM’10]DTL[Longetal.,SDM’12]OurMethodsHIDCMeasure:classificationaccuracyConceptLearningforTransferLearning442023/2/1Resultsonnewtransferlearningproblems,weselecttheproblems,whoseaccuraciesofLRarehigherthan50%,then334problemsareobtainedExperimentalResults(1/5)ConceptLearningforTransferLearning452023/2/1Resultsonnewtransferlearningproblems,weselecttheproblems,whoseaccuraciesofLRarehigherthan50%,then334problemsareobtainedExperimentalResults(2/5)ConceptLearningforTransferLearning462023/2/1ExperimentalResults(3/5)ConceptLearningforTransferLearning472023/2/1Sourcedomain:S
(rec.autos,
sci.space),Targetdomain:T(rec.sport.hockey,talk.politics.mideast)STSTDistinctconceptSTAlikeconceptExperimentalResults(4/5)ConceptLearningforTransferLearning482023/2/1ExperimentalResults(5/5)ConceptLearningforTransferLearningIndeed,theproposedprobabilisticmethodHIDCisalsobetterthanTriTLThismayduetothereasonthatthereismoreclearerprobabilisticexplanationofHIDCp1(z,y)=p2(z,y)orp1(z|y)=p2(z|y)whichisbetter?p(z|y)p(y)492023/2/1[1]FuzhenZhuang,PingLuo,HuiXiong,QingHe,YuhongXiong,ZhongzhiShi:ExploitingAssociationsbetweenWordClustersandDocumentClassesforCross-DomainTextCategorization.SDM2010,pp.13-24.[2]FuzhenZhuang,PingLuo,ZhiyongShen,QingHe,YuhongXiong,ZhongzhiShi,HuiXiong:CollaborativeDual-PLSA:miningdistinctionandcommonalityacrossmultipledomainsfortextclassification.CIKM2010,pp.359-368.[3]FuzhenZhuang,PingLuo,ZhiyongShen,QingHe,YuhongXiong,ZhongzhiShi,HuiXiong:MiningDistinctionandCommonalityacrossMultipleDomainsUsingGenerativeModelforTextClassification.IEEETrans.Knowl.DataEng.24(11):2025-2039(2012).[3]FuzhenZhuang,PingLuo,ChangyingDu,QingHe,ZhongzhiShi:Triplextransferlearning:exploitingbothsharedanddistinctconceptsfortextclassification.WSDM2013,pp.425-434.[4]FuzhenZhuang,PingLuo,PeifengYin,QingHe,ZhongzhiShi.:ConceptLearningforCross-domainTextClassification:aGeneralProbabilisticFramework.IJCAI2013,pp.1960-1966.ReferencesConceptLearningforTransferLearningOutlineConceptLearningforTransferLearningConceptLearningbasedonNon-negativeMatrixTri-factorizationforTransferLearningConceptLearningbasedonProbabilisticLatentSemanticAnalysisforTransferLearningTransferLearningusingAuto-encodersTransferLearningfromMultipleSourceswithAutoencoderRegularizationSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders502023/2/1TransferLearningfromMultipleSourceswithAutoencoderRegularization512023/2/1TransferLearningUsingAuto-encoders52Motivation(1/2)TransferlearningbasedonoriginalfeaturespacemayfailtoachievehighperformanceonTargetdomaindataWeconsidertheautoencodertechniquetocollaborativelyfindanewrepresentationofbothsourceandtargetdomaindataElectronicsVideoGames
Compact;easytooperate;verygoodpicture,excited
aboutthequality;lookssharp!Averygood
game!Itisactionpacked
andfullofexcitement.Iamverymuchhooked
onthisgame.522023/2/1TransferLearningUsingAuto-encodersPreviousmethodsoftentransferfromonesourcedomaintoonetargetdomainWeconsidertheconsensusregularizedframeworkforlearningfrommultiplesourcedomainsDVDBookKitchenElectronicsWeproposeatransferlearningframeworkofconsensusregularizationautoencoderstolearnfrommultiplesourcesMotivation(2/2)532023/2/1TransferLearningUsingAuto-encodersAutoencoderNeuralNetworkMinimizingthereconstructionerrortoderivethesolution:whereh,garenonlinearactivationfunction,e.g.,Sigmoidfunction,forencodinganddecoding542023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(1/3)Example:three-classclassificationproblem,threeclassifierspredictinstancesf1f2f3f1f2f3x1111x2333x3222x4231x5313x6123ConstraintSource1:D1Source2:D2Source3:D3552023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(2/3)Example:three-classclassificationproblem,predictiononinstancexMinimalentropy,MaximalConsensusMaximalentropy,MinimalConsensusEntropybasedConsensusMeasure(Luoetal.,CIKM’08)θiistheparametervectorofclassifieri,Cistheclasslabelset562023/2/1TransferLearningUsingAuto-encodersConsensusMeasure-(3/3)Forsimplicity,theconsensusmeasureforbinaryclassificationcanberewrittenasInthiswork,weimposetheconsensusregularizationtoautoencoders,andtrytoimprovethelearningperformancefrommultiplesourcedomainssincetheireffectsonmakingthepredictionconsensusaresimilar.572023/2/1TransferLearningUsingAuto-encodersSomeNotations
SourcedomainsGivenrsourcedomains:,i.e.,
,.
ThefirstcorrespondingdatamatrixisTargetdomainThecorrespondingdatamatrixis
Thegoalistotrainaclassifier
ftomakeprecisepredictionson.582023/2/1TransferLearningUsingAuto-encodersFrameworkofCRAThedatafromallsourceandtargetdomainssharethesameencodinganddecodingweightsTheclassifierstrainedfromthenewrepresentationareregularizedtopredictthesameresultsontargetdomaindata592023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ReconstructionError602023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ConsensusRegularization612023/2/1TransferLearningUsingAuto-encodersOptimizationProblemofCRATheoptimizationproblem:ThetotallossofsourceclassifiersoverthecorrespondingsourcedomaindatawiththehiddenrepresentationWeighdecayterm622023/2/1TransferLearningUsingAuto-encodersTheSolutionofCRAWeusethegradientdescentmethodtoderivethesolutionofallparametersƞisthelearningrate.ThetimecomplexityisO(rnmk)Theoutput:theencodinganddecodingparameters,andsourceclassifierswithlatentrepresentation.632023/2/1TransferLearningUsingAuto-encodersTargetClassifierConstructionTwoScheme:Trainthesourceclassifiersbasedonandcombinethemas,whereCombineallthesourcedomaindataasZSandtrainaunifiedclassifierusinganysupervisedlearningalgorithms,e.g.,SVM,LogisticRegression(LR).ThetwoaccuraciesaredenotedasCRAvandCRAu,respectively642023/2/1TransferLearningUsingAuto-encodersDataSets-(1/2)ImageData(fromLuoetal.,CIKM08)(Someexamples)AB
A1A2A3A4B1B2B3B4Threesources:A1B1A2B2A3B3Targetdomain:A4B4Totally,96()3-sourcevs1-targetdomain(3vs1)probleminstancescanbeconstructedfortheexperimentalevaluation652023/2/1TransferLearningUsingAuto-encodersDataSets-(2/2)SentimentClassification(fromBlitzeretal.,ACL07)Four3-sourcevs1-targetdomainclassificationproblemsareconstructedDVDBookKitchenElectronicsTheaccuracyontargetdomaindataisusedastheevaluationmeasureBothSVMandLRareusedtotrainclassifiersonthenewrepresentation662023/2/1TransferLearningUsingAuto-encodersAllComparedAlgorithmsBaselinesSupervisedlearningonoriginalfeatures:SVM
[Joachims,ICML’99],LogisticRegression(LR)[Davidetal.,00]Embeddingmethodbasedonautoencoders(EAER)[Yuetal.,ECML’13]MarginalizedStackedDenoisingAutoencoders
(mSDA)[Chenetal.,ICML’12]TransferComponentAnalysis(TCA)[Panetal.,TNN’11]Transferlearningfrommultiplesources(CCR3)(Luoetal.,CIKM’08)Ourmethod:CRAvandCRAuForthemethodswhichcannothandlemultiplesources,wetraintheclassifiersfromeachsourcedomainandmergeddataofallsources(r+1accuracies).Finally,maximal,meanandminimalvaluesarereported.672023/2/1TransferLearningUsingAuto-encoders68ExperimentalResults-(1/2)TransferLearningwithMultipleSourcesviaConsensusRegularizationAutoencodersFuzhenZhuang,XiaohuCheng,SinnoJialinPan,WenchaoYu,QingHe,andZhongzhiShiResultson96imageclassificationproblems69ExperimentalResults-(2/2)TransferLearningwithMultipleSourcesviaConsensusRegularizationAutoencodersFuzhenZhuang,XiaohuCheng,SinnoJialinPan,WenchaoYu,QingHe,andZhongzhiShiResultson4sentimentclassificationproblemsConclusionsThewellknownrepresentationlearningtechniqueautoencoderisconsidered,andweformalizetheautoencodersandconsensusregularizationintoaunifiedoptimizationframeworkExtensivecomparisonexperimentsonimageandsentimentdataareconductedtoshowtheeffectivenessoftheproposealgorithm702023/2/1TransferLearningUsingAuto-encodersSupervisedRepresentationLearning:TransferLearningwithDeepAuto-encoders712023/2/1TransferLearningUsingAuto-encodersAutoencoderisanunsupervisedfeaturelearningalgorithm,whichcannoteffectivelymakeuseofthelabelinformationLimitationofBasicAutoencoderContributionofThisWorkWeextendAutoencodertomulti-layerstructure,andincorporatethelabelasonelayerMotivation722023/2/1TransferLearningUsingAuto-encoders源领域和目标领域共享编码和解码权重利用KL距离对隐层空间进行约束利用多类回归模型对类标层进行约束FrameworkofTLDA(1/5)732023/2/1TransferLearningUsingAuto-encoders目标是最小化重构误差:DeepAutoencoderFrameworkofTLDA(2/5)742023/2/1TransferLearningUsingAuto-encodersKL距离KL距离衡量的是两个概率分布的差异情况,计算公式如下:以上KL距离并不满足传
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六年级下学期词组语法归纳
- 2024-2025学年版块16 欧姆定律及电阻定律 专题16-1 欧姆定律常考题型 (含答案) 初中物理尖子生自主招生培优讲义83讲
- 2025届吉林省九师联盟高三上教学质量监测语文试题及答案
- 内蒙古通辽市奈曼旗2023-2024学年中考数学考前最后一卷含解析
- 湖北省黄冈市2023-2024学年高二上学期期中考试化学试题
- 小班奇妙的人体课件
- 车载充电机行业供需现状与发展战略规划
- 建设工程装潢合同模板
- 塑胶外发加工合同模板
- 外贸代付款合同模板
- 镁合金行业发展分析及投资前景预测报告
- 中国成人局灶性癫痫规范化诊治指南
- 2024年培训主管培训课件EAP(一)-(多场景)
- 基因工程技术在生物质燃料加工中的应用
- 液化气安全使用培训
- 部队预防中暑
- 门静脉血栓护理查房课件
- 《混凝土浇筑》课件
- 搜救犬搜救方案
- 2023-2024学年福建省福州市八县市一中高一上学期期中联考试题 生物(解析版)
- 健身理论与指导
评论
0/150
提交评论