浙江省杭州市七县市2023-2024学年高考压轴卷数学试卷含解析_第1页
浙江省杭州市七县市2023-2024学年高考压轴卷数学试卷含解析_第2页
浙江省杭州市七县市2023-2024学年高考压轴卷数学试卷含解析_第3页
浙江省杭州市七县市2023-2024学年高考压轴卷数学试卷含解析_第4页
浙江省杭州市七县市2023-2024学年高考压轴卷数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市七县市2023-2024学年高考压轴卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线l不平行于平面α,且l⊄α,则()A.α内所有直线与l异面B.α内只存在有限条直线与l共面C.α内存在唯一的直线与l平行D.α内存在无数条直线与l相交2.已知复数满足,其中为虚数单位,则().A. B. C. D.3.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()A.30° B.45° C.60° D.75°4.若x,y满足约束条件且的最大值为,则a的取值范围是()A. B. C. D.5.第七届世界军人运动会于2019年10月18日至27日在中国武汉举行,中国队以133金64银42铜位居金牌榜和奖牌榜的首位.运动会期间有甲、乙等五名志愿者被分配到射击、田径、篮球、游泳四个运动场地提供服务,要求每个人都要被派出去提供服务,且每个场地都要有志愿者服务,则甲和乙恰好在同一组的概率是()A. B. C. D.6.已知全集,集合,则=()A. B.C. D.7.函数的大致图象是()A. B.C. D.8.已知正四面体外接球的体积为,则这个四面体的表面积为()A. B. C. D.9.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是()A. B. C. D.10.已知函数,,若存在实数,使成立,则正数的取值范围为()A. B. C. D.11.设函数,则使得成立的的取值范围是().A. B.C. D.12.已知复数z满足i•z=2+i,则z的共轭复数是()A.﹣1﹣2i B.﹣1+2i C.1﹣2i D.1+2i二、填空题:本题共4小题,每小题5分,共20分。13.设实数x,y满足,则点表示的区域面积为______.14.已知矩形ABCD,AB=4,BC=3,以A,B为焦点,且过C,D两点的双曲线的离心率为____________.15.已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_______.16.对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.18.(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(Ⅰ)求曲线的普通方程与直线的直角坐标方程;(Ⅱ)已知直线与曲线交于,两点,与轴交于点,求.19.(12分)在平面直角坐标系中,直线的参数方程为(为参数),直线与曲线交于两点.(1)求的长;(2)在以为极点,轴的正半轴为极轴建立的极坐标系中,设点的极坐标为,求点到线段中点的距离.20.(12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为、、、、、、、共8个等级.参照正态分布原则,确定各等级人数所占比例分别为、、、、、、、.选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到、、、、、、、八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布.(1)求物理原始成绩在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间的人数,求的分布列和数学期望.(附:若随机变量,则,,)21.(12分)选修4­4:坐标系与参数方程在平面直角坐标系xOy中,已知曲线C的参数方程为(α为参数).以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为,点P为曲线C上的动点,求点P到直线l距离的最大值.22.(10分)在平面直角坐标系中,已知椭圆的中心为坐标原点焦点在轴上,右顶点到右焦点的距离与它到右准线的距离之比为.(1)求椭圆的标准方程;(2)若是椭圆上关于轴对称的任意两点,设,连接交椭圆于另一点.求证:直线过定点并求出点的坐标;(3)在(2)的条件下,过点的直线交椭圆于两点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

通过条件判断直线l与平面α相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面α,且l⊄α可知直线l与平面α相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.2、A【解析】

先化简求出,即可求得答案.【详解】因为,所以所以故选:A【点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.3、C【解析】

如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.4、A【解析】

画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.5、A【解析】

根据题意,五人分成四组,先求出两人组成一组的所有可能的分组种数,再将甲乙组成一组的情况,即可求出概率.【详解】五人分成四组,先选出两人组成一组,剩下的人各自成一组,所有可能的分组共有种,甲和乙分在同一组,则其余三人各自成一组,只有一种分法,与场地无关,故甲和乙恰好在同一组的概率是.故选:A.【点睛】本题考查组合的应用和概率的计算,属于基础题.6、D【解析】

先计算集合,再计算,最后计算.【详解】解:,,.故选:.【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础题.7、A【解析】

用排除B,C;用排除;可得正确答案.【详解】解:当时,,,所以,故可排除B,C;当时,,故可排除D.故选:A.【点睛】本题考查了函数图象,属基础题.8、B【解析】

设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.故选:B.【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.9、A【解析】

根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,,即,即,,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.10、A【解析】

根据实数满足的等量关系,代入后将方程变形,构造函数,并由导函数求得的最大值;由基本不等式可求得的最小值,结合存在性问题的求法,即可求得正数的取值范围.【详解】函数,,由题意得,即,令,∴,∴在上单调递增,在上单调递减,∴,而,当且仅当,即当时,等号成立,∴,∴.故选:A.【点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.11、B【解析】

由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【详解】由题意知:定义域为,,为偶函数,当时,,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.12、D【解析】

两边同乘-i,化简即可得出答案.【详解】i•z=2+i两边同乘-i得z=1-2i,共轭复数为1+2i,选D.【点睛】的共轭复数为二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先画出满足条件的平面区域,求出交点坐标,利用定积分即可求解.【详解】画出实数x,y满足表示的平面区域,如图(阴影部分):则阴影部分的面积,故答案为:【点睛】本题考查了定积分求曲边梯形的面积,考查了微积分基本定理,属于基础题.14、2【解析】

根据为焦点,得;又求得,从而得到离心率.【详解】为焦点在双曲线上,则又本题正确结果:【点睛】本题考查利用双曲线的定义求解双曲线的离心率问题,属于基础题.15、60【解析】

根据题中给的信息与双曲线的定义可求得与,再在中,由余弦定理求解得,继而得到各边的长度,再根据计算求解即可.【详解】如图所示:设双曲线的半焦距为.因为,,,所以由勾股定理,得.所以.因为是上一个靠近点的三等分点,是的中点,所以.由双曲线的定义可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.则.则,得.则的底边上的高为.所以.故答案为:60【点睛】本题主要考查了双曲线中利用定义与余弦定理求解线段长度与面积的方法,需要根据双曲线的定义表示各边的长度,再在合适的三角形里面利用余弦定理求得基本量的关系.属于难题.16、【解析】

由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.【详解】因为是定义在上G函数,所以对任意的总有,则对任意的恒成立,解得,当时,又因为,,时,总有成立,即恒成立,即恒成立,又此时的最小值为,即恒成立,又因为解得.故答案为:【点睛】本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】

(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;(2)将解析式代入,结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.【详解】(1)依题意,,,设切点为,,故,故,则;令,,故当时,,当时,,故当时,函数有最小值,由于,故有唯一实数根0,即,则;(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;由于.由,解得,.当变化时,与的变化情况如下表所示:30+0极小值极大值所以在,上单调递减,在上单调递增.又因为,,,,故当或时,直线与曲线在上有两个交点,即当或时,函数在区间上有两个零点.【点睛】本题考查了导数的几何意义应用,由切线方程求参数值,构造函数法求参数的取值范围,函数零点的意义及综合应用,属于难题.18、(1)(x-1)2+y2=4,直线l的直角坐标方程为x-y-2=0;(2)3.【解析】

(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于的一元二次方程,由根与系数的关系、参数的几何意义进行求解.【详解】(1)由曲线C的参数方程(α为参数)(α为参数),两式平方相加,得曲线C的普通方程为(x-1)2+y2=4;由直线l的极坐标方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直线l的直角坐标方程为x-y-2=0.(2)由题意可得P(2,0),则直线l的参数方程为(t为参数).设A,B两点对应的参数分别为t1,t2,则|PA|·|PB|=|t1|·|t2|,将(t为参数)代入(x-1)2+y2=4,得t2+t-3=0,则Δ>0,由韦达定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.19、(1);(2).【解析】

(1)将直线的参数方程化为直角坐标方程,由点到直线距离公式可求得圆心到直线距离,结合垂径定理即可求得的长;(2)将的极坐标化为直角坐标,将直线方程与圆的方程联立,求得直线与圆的两个交点坐标,由中点坐标公式求得的坐标,再根据两点间距离公式即可求得.【详解】(1)直线的参数方程为(为参数),化为直角坐标方程为,即直线与曲线交于两点.则圆心坐标为,半径为1,则由点到直线距离公式可知,所以.(2)点的极坐标为,化为直角坐标可得,直线的方程与曲线的方程联立,化简可得,解得,所以两点坐标为,所以,由两点间距离公式可得.【点睛】本题考查了参数方程与普通方程转化,极坐标与直角坐标的转化,点到直线距离公式应用,两点间距离公式的应用,直线与圆交点坐标求法,属于基础题.20、(Ⅰ)1636人;(Ⅱ)见解析.【解析】

(Ⅰ)根据正态曲线的对称性,可将区间分为和两种情况,然后根据特殊区间上的概率求出成绩在区间内的概率,进而可求出相应的人数;(Ⅱ)由题意得成绩在区间[61,80]的概率为,且,由此可得的分布列和数学期望.【详解】(Ⅰ)因为物理原始成绩,所以.所以物理原始成绩在(47,86)的人数为(人).(Ⅱ)由题意得,随机抽取1人,其成绩在区间[61,80]内的概率为.所以随机抽取三人,则的所有可能取值为0,1,2,3,且,所以,,,.所以的分布列为0123所以数学期望.【点睛】(1)解答第一问的关键是利用正态分布的三个特殊区间表示所求概率的区间,再根据特殊区间上的概率求解,解题时注意结合正态曲线的对称性.(2)解答第二问的关键是判断出随机变量服从二项分布,然后可得分布列及其数学期望.当被抽取的总体的容量较大时,抽样可认为是等可能的,进而可得随机变量服从二项分布.21、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论