欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网

高数二重积分

一、利用直角坐标计算二重积分。由曲顶柱体体积的计算可知。若D为Y –型区域。Y型区域的特点。若区域如图。在分割后的三个区域上分别使用积分公式。第二节 二重积分的计算。分别用平行于x轴和y轴的直线对区域进行分割。利用二重积分的几何意义化二重积分为二次积分。(1)当积分区域为。以下均设函数。第一节 二重积分的概念与性质。

高数二重积分Tag内容描述:<p>1、第二节,二重积分的计算法,第九章,一、利用直角坐标计算二重积分,且在D上连续时,由曲顶柱体体积的计算可知,若D为 X 型区域,则,若D为Y 型区域,则,X型区域的特点: 穿过区域且平行于y轴的直线与区域边界相交不多于两个交点.,Y型区域的特点:穿过区域且平行于x轴的直线与区域边界相交不多于两个交点.,若区域如图,,在分割后的三个区域上分别使用积分公式,则必须分割.,例1. 计算,其中D 是直线 y1, x2, 及,yx 所围的闭区域.,解法1. 将D看作X型区域, 则,解法2. 将D看作Y型区域, 则,作草图、选择类型、确定上下限-,后积先定限、限内化条线,例2. 计。</p><p>2、第二节 二重积分的计算,一 直角坐标系中的计算方法,二 极坐标系中的计算方法,一 直角坐标系中的计算方法,计算二重积分的基本思想:化为两次定积分,分别用平行于x轴和y轴的直线对区域进行分割,如图。,x,y,可见,除边缘外,其余均为矩形,其面积为,可以证明:,其中dxdy称为面积元素。,利用二重积分的几何意义化二重积分为二次积分,(1)当积分区域为,以下均设函数 且在D上连续。,如图所示:,相应的曲顶柱体如右图。,在区间a,b内任取一点x,过此点作与yoz面平行的平面,它与曲顶柱体相交得到一个一个曲边梯形:,底为,高为,其面积为,所以根。</p><p>3、第一节 二重积分的概念与性质,一、问题的提出,二、二重积分的概念,三、二重积分的性质,四、小结 思考题,特点:平顶.,柱体体积=?,特点:曲顶.,曲顶柱体,曲顶柱体的体积,一、问题的提出,步骤如下:,用若干个小平 顶柱体体积之 和近似表示曲 顶柱体的体积,,先分割曲顶柱体的底,并取典型小区域,,曲顶柱体的体积,求平面薄片的质量,将薄片分割成若干小块,,取典型小块,将其近似 看作均匀薄片,,所有小块质量之和 近似等于薄片总质量,二、二重积分的概念,积分区域,积分和,被积函数,积分变量,被积表达式,面积元素,对二重积分定义的说明:,二。</p><p>4、第九章 重积分习题课(一),二 重 积 分,一、二重积分的概念,1定义 :,2几何意义:,表示曲顶柱体的体积,3物理意义:,二、二重积分的性质(三重类似),1线性性质:,2. 可加性:,4. 单调性:,3. 区域 的面积:,若在 上, ,则,设,5估值性质:,6中值定理:,7.奇偶对称性:, 是 的面积,0,D关于x(或y)轴对称, 为y(或x)的奇函数,设函数 在闭区域 上连续,D关于x(或y)轴对称, 为y(或x)的偶函数,则,三、二重积分的计算方法,1利用直角坐标计算,(1)X-型区域:,.,关键:选择积分次序,(2)Y-型区域:,2利用极坐标计算,四. 典型例题,由于在 上,故由二重积。</p>
【高数二重积分】相关PPT文档
高数9-2二重积分的计算.ppt
高等数学二重积分详解.ppt
高等数学二重积分.ppt
高等数学二重积分习题课.ppt
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!