函数极限运算
第九讲 函数极限的运算。理解极限与左右极限的关系。熟练掌握极限的四则运算法则 以及运用左右极限计算分段函数在分段点处的极限。熟练掌握极限的四则运算法则 以及运用左右极限计算分段函数在分段点处的极限。理解无穷小量的定义。理解函数极限与无穷小量间的关系。理解函数极限与无穷小量间的关系。掌握无穷小量的比较。
函数极限运算Tag内容描述:<p>1、一元微积分学,大 学 数 学(一),第九讲 函数极限的运算,第三章 函数的极限与连续性,本章学习要求: 了解函数极限的概念,知道运用“”和 “X ”语言描 述函数的极限。 理解极限与左右极限的关系。熟练掌握极限的四则运算法则 以及运用左右极限计算分段函数在分段点处的极限。 理解无穷小量的定义。理解函数极限与无穷小量间的关系。 掌握无穷小量的比较,能熟练运用等价无穷小量计算相应的 函数极限。了解无穷大量的概念及其与无穷小量的关系。 理解极限存在准则。能较好运用极限存在准则和两个重要极 限求相应的函数极限。 理解函数在一。</p><p>2、第二章 极 限,本章学习要求: 了解数列极限、函数极限概念,知道运用“”和 “X ” 语言描 述函数的极限。 理解极限与左右极限的关系。熟练掌握极限的四则运算法则 以及运用左右极限计算分段函数在分段点处的极限。 理解无穷小量的定义。理解函数极限与无穷小量间的关系。 掌握无穷小量的比较,能熟练运用等价无穷小量计算相应的 函数极限。了解无穷大量的概念及其与无穷小量的关系。 理解极限存在准则。能较好运用极限存在准则和两个重要极 限求相应的函数极限。,第二章 极 限,第四节 极限运算法则,极限运算法则的理论依据,依据无穷小量。</p><p>3、第三章 函数的极限与连续性,本章学习要求: 了解函数极限的概念,知道运用“”和 “X ”语言描 述函数的极限。 理解极限与左右极限的关系。熟练掌握极限的四则运算法则 以及运用左右极限计算分段函数在分段点处的极限。 理解无穷小量的定义。理解函数极限与无穷小量间的关系。 掌握无穷小量的比较,能熟练运用等价无穷小量计算相应的 函数极限。了解无穷大量的概念及其与无穷小量的关系。 理解极限存在准则。能较好运用极限存在准则和两个重要极 限求相应的函数极限。 理解函数在一点连续以及在区间上连续的概念,会判断函数 间断点的类型。</p><p>4、一元微积分学,大 学 数 学(1),第七讲 函数极限的运算,授课教师:刘长荣,第二章 极 限,本章学习要求: 了解数列极限、函数极限概念,知道运用“”和 “X ” 语言描 述函数的极限。 理解极限与左右极限的关系。熟练掌握极限的四则运算法则 以及运用左右极限计算分段函数在分段点处的极限。 理解无穷小量的定义。理解函数极限与无穷小量间的关系。 掌握无穷小量的比较,能熟练运用等价无穷小量计算相应的 函数极限。了解无穷大量的概念及其与无穷小量的关系。 理解极限存在准则。能较好运用极限存在准则和两个重要极 限求相应的函数极限。,。</p><p>5、一元微积分学,大 学 数 学(一),第5讲 函数极限的运算,第二章 函数的极限与连续性,第五节 极限的运算法则,极限运算法则的理论依据,依据无穷小量的运算法则,由此你能不能写出极限四则运算公式?,一. 极限运算法则,和的极限等于极限的和.,乘积的极限等于极限的乘积.,商的极限等于极限的商(分母不为零).,?,设在某极限过程中, 函数 f (x)、g(x) 的极限 lim f (x)、lim g(x) 存在, 则,法则 1、3 可推广至有限个函数的情形.,由极限运算理论根据中的定理及无穷小量的运算法则, 容易证明上述各公式.,例题: P67-68.,1.直接代入计算法.,总结:,5. 。</p>