讲立体几何中的向量方法
长沙模拟)在正方体A1B1C1D1-ABCD中。长沙模拟)在正方体A1B1C1D1-ABCD中。(2)直线和平面所成角的求法。设直线l的方向向量为e。设直线l的方向向量为e。直线l与平面α所成的角为φ。(2)已知EF=FB=AC=2。直线与平面所成角的正弦值&#183。二面角、直线与平面所成的角&#183。
讲立体几何中的向量方法Tag内容描述:<p>1、我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散第10讲立体几何中的向量方法题型1向量法求线面角(对应学生用书第33页)核心知识储备1两条异面直线的夹角(1)两异面直线的夹角.(2)设直线l1,l2的方向向量为s1,s2,则cos |coss1,s2|.2直线与平面的夹角(1)直线与平面的夹角.(2)设直线l的方向向量为a,平面的法向量为n,则sin |cosa,n|.典题试解寻法【典题】(2016全国卷)如图101,四棱锥PABCD中,PA底面ABCD,ADBC,ABADAC3,PABC4。</p><p>2、2018版高考数学大一轮复习 第八章 立体几何与空间向量 第8讲 立体几何中的向量方法(二)求空间角试题 理 新人教版基础巩固题组(建议用时:40分钟)一、选择题1.(2016长沙模拟)在正方体A1B1C1D1ABCD中,AC与B1D所成的角的大小为()A. B. C. D.解析建立如图所示的空间直角坐标系,设正方体边长为1,则A(0,0,0),C(1,1,0),B1(1,0,1),D(0,1,0).(1,1,0),(1,1,1),1(1)110(1)0,AC与B1D所成的角为.答案D2.(2017郑州调研)在正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的正弦值为()A. B. C. D.解析设正方体的棱长为1,以D为坐标原点,。</p><p>3、第7讲立体几何中的向量方法1空间向量与空间角的关系(1)两条异面直线所成角的求法(a,b分别为l1,l2的方向向量)a与b的夹角l1与l2所成的角范围(0,)求法cos cos |cos |(2)直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面的法向量为n,直线l与平面所成的角为,两向量e与n的夹角为,则有sin |cos |(3)二面角的求法a如图,AB,CD是二面角l两个半平面内与棱l垂直的直线,则二面角的大小,b如图,n1,n2分别是二面角l的两个半平面,的法向量,则二面角的大小满足cos cosn1,n2或cosn1,n22点到平面的距离的求法如图,设AB为平面的一。</p><p>4、专题四 立体几何 第2讲 立体几何中的向量方法练习 理1.(2016山东卷)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点,求证:GH平面ABC;(2)已知EFFBAC2,ABBC,求二面角FBCA的余弦值.(1)证明设FC中点为I,连接GI,HI,在CEF中,因为点G是CE的中点,所以GIEF.又EFOB,所以GIOB.在CFB中,因为H是FB的中点,所以HIBC,又HIGII,所以平面GHI平面ABC.因为GH平面GHI,所以GH平面ABC.(2)解连接OO,则OO平面ABC.又ABBC,且AC是圆O的直径,所以BOAC.以O为坐标原点,建立如图所示。</p><p>5、第3讲立体几何中的向量方法年份卷别考查内容及考题位置命题分析2018卷直线与平面所成角的正弦值T18(2)高考对此部分的命题较为稳定,一般为解答题,多出现在第18或19题的第二问的位置,考查利用空间向量求异面直线所成的角、线面角或二面角,难度中等偏上.卷二面角、直线与平面所成的角T20(2)卷二面角的正弦值T19(2)2017卷二面角的余弦值的求解T18(2)卷二面角的余弦值的求解T19(2)卷二面角的余弦值的求解T19(2)2016卷二面角的余弦值的求解T18(2)卷二面角的正弦值的求解T19(2)卷线面角的正弦值的求解T19(2)利用空间向量证明平行与垂直(综合。</p><p>6、专题四 立体几何 第2讲 立体几何中的向量方法练习1.(2016山东卷)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点,求证:GH平面ABC;(2)已知EFFBAC2,ABBC,求二面角FBCA的余弦值.(1)证明设FC中点为I,连接GI,HI,在CEF中,因为点G是CE的中点,所以GIEF.又EFOB,所以GIOB.在CFB中,因为H是FB的中点,所以HIBC,又HIGII,所以平面GHI平面ABC.因为GH平面GHI,所以GH平面ABC.(2)解连接OO,则OO平面ABC.又ABBC,且AC是圆O的直径,所以BOAC.以O为坐标原点,建立如图所示的。</p><p>7、专题七 附加题(必做部分)第1讲 立体几何中的向量方法练习 理1.(2016南通调研)如图,在四棱锥SABCD中,底面ABCD为矩形,SA平面ABCD,AB1,ADAS2,P是棱SD上一点,且SPPD.(1)求直线AB与CP所成角的余弦值;(2)求二面角APCD的余弦值.解(1)如图,以A为坐标原点,分别以AB,AD,AS所在直线为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),S(0,0,2).设P(x0,y0,z0),由得(x0,y0,z02)(0,2,2),所以x00,y0,z0,点P坐标为.,(1,0,0).设直线AB与CP所成的角为,由图可知,为锐角,则cos .(2)设平面AP。</p><p>8、第2讲 立体几何中的向量方法,高考定位 以空间几何体为载体考查空间角是高考命题的重点,常与空间线面关系的证明相结合,热点为二面角的求解,均以解答题的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上.,真 题 感 悟,(2016浙江卷)如图,在三棱台ABCDEF中,平面BCFE平面ABC,ACB90,BEEFFC1,BC2,AC3.,(1)求证:BF平面ACFD; (2)求二面角BADF的平面角的余弦值.,(1)证明 延长AD,BE,CF相交于一点K,如图所示. 因为平面BCFE平面ABC,平面BCFE平面ABCBC,,且ACBC,所以AC平面BCK, 因此BFAC. 又因为EFBC,BEEFFC1,BC2,所以。</p><p>9、第7讲立体几何中的向量方法1空间向量与空间角的关系(1)两条异面直线所成角的求法(a,b分别为l1,l2的方向向量)a与b的夹角l1与l2所成的角范围(0,)求法cos cos |cos |(2)直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面的法向量为n,直线l与平面所成的角为,两向量e与n的夹角为,则有sin |cos |(3)二面角的求法a如图,AB,CD是二面角l两个半平面内与棱l垂直的直线,则二面角的大小,b如图,n1,n2分别是二面角l的两个半平面,的法向量,则二面角的大小满足cos cosn1,n2或cosn1,n22点到平面的距离的求法如图,设AB为平面的一。</p><p>10、第7讲 立体几何中的向量方法(一)一、选择题1直线l1,l2相互垂直,则下列向量可能是这两条直线的方向向量的是()As1(1,1,2),s2(2,1,0)Bs1(0,1,1),s2(2,0,0)Cs1(1,1,1),s2(2,2,2)Ds1(1,1,1),s2(2,2,2)解析 两直线垂直,其方向向量垂直,只有选项B中的两个向量垂直答案B2已知a,b满足ab,则等于()A. B. C D解析由,可知.答案B3平面经过三点A(1,0,1),B(1,1,2),C(2,1,0),则下列向量中与平面的法向量不垂直的是 ()A. B(6,2,2)C(4,2,2) D(1,1,4)解析设平面的法向量为n,则n,n,n,所有与(或、)平行的向量或可用与线性表示的向量。</p><p>11、第7讲立体几何中的向量方法1空间向量与空间角的关系(1)两条异面直线所成角的求法(a,b分别为l1,l2的方向向量)a与b的夹角l1与l2所成的角范围(0,)求法cos cos |cos |(2)直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面的法向量为n,直线l与平面所成的角为,两向量e与n的夹角为,则有sin |cos |(3)二面角的求法a如图,AB,CD是二面角l两个半平面内与棱l垂直的直线,则二面角的大小,b如图,n1,n2分别是二面角l的两个半平面,的法向量,则二面角的大小满足cos cosn1,n2或cosn1,n22点到平面的距离的求法如图,设AB为平面的一。</p><p>12、第7讲 立体几何中的向量方法基础题组练1.将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为,长为,其中B1与C在平面AA1O1O的同侧则异面直线B1C与AA1所成的角的大小为()A.B. C.D.解析:选B.以O为坐标原点建系如图,则A(0,1,0),A1(0,1,1),B1,C.所以(0,0,1),(0,1,1),所以cos,所以,所以异面直线B1C与AA1所成的角为.故选B.2如图,已知长方体ABCDA1B1C1D1中,ADAA11,AB3,E为线段AB上一点,且AEAB,则DC1与平面D1EC所成的角的正弦值为()A. B.C. D.解析:选A.如图,以D为坐标原点,DA,DC,DD1所在直线分别为。</p><p>13、第8讲立体几何中的向量方法(二)求空间角一、选择题1.(2016长沙模拟)在正方体A1B1C1D1ABCD中,AC与B1D所成的角的大小为()A. B. C. D.解析建立如图所示的空间直角坐标系,设正方体边长为1,则A(0,0,0),C(1,1,0),B1(1,0,1),D(0,1,0).(1,1,0),(1,1,1),1(1)110(1)0,AC与B1D所成的角为.答案D2.(2017郑州调研)在正方体ABCDA1B1C1D1中,BB1与平面ACD1所成角的正弦值为()A. B. C. D.解析设正方体的棱长为1,以D为坐标原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,如图所示.则B(1,1,0),B1(1,1,1),A(。</p><p>14、第8讲 立体几何中的向量方法(二)一、选择题1两平行平面,分别经过坐标原点O和点A(2,1,1),且两平面的一个法向量n(1,0,1),则两平面间的距离是()A. B. C. D3解析 两平面的一个单位法向量n0,故两平面间的距离d|n0|.答案B2已知向量m,n分别是直线l和平面的方向向量、法向量,若cosm,n,则l与所成的角为 ()A30 B60 C120 D150解析设l与所成的角为,则sin |cosm,n|,30.答案A3长方体ABCDA1B1C1D1中,ABAA12,AD1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为 ()A. B. C. D.解析建立坐标系如图,则A(1。</p>