欢迎来到人人文库网! | 帮助中心 人人文档renrendoc.com美如初恋!
人人文库网

实对称矩阵的相似矩阵

4 实对称矩阵的相似矩阵。一、实对称矩阵的特征值的有关性质。一、实对称矩阵的特征值的有关性质。二、求正交矩阵的方法。二、求正交矩阵的方法。对称阵。此时 A 称为实对称矩阵.。此时 A 称为实对称矩阵.。性质1. 实对称阵的特征值全为实数.。性质1. 实对称阵的特征值全为实数.。性无关组所包含的向量个数恰为k.。

实对称矩阵的相似矩阵Tag内容描述:<p>1、1,4 实对称矩阵的相似矩阵,一、实对称矩阵的特征值的有关性质,二、求正交矩阵的方法,2,对称阵,此时 A 称为实对称矩阵.,性质1. 实对称阵的特征值全为实数.,一、实对称矩阵的特征值的有关性质,3,性质2.,证明:,4,定理八.,那么,其最大线,性无关组所包含的向量个数恰为k.,推论. 实对称矩阵必与对角矩阵相似.,定理九.若A为n阶实对称阵,则总有正交,阵P,使,5,二、求正交矩阵的方法,求正交矩阵的具体步骤为:,6,例.,解: 第一步: 求出A的所有特征值.,A的特征多项式:,故特征值为:,7,第二步:,求出A的特征向量.,取同解方程组:,8,9,基础解系:,取同解方程。</p><p>2、中南财经政法大学信息系,第四节 对称矩阵的相似矩阵,第五章 矩阵的特征值 与特征向量,定理1 对称矩阵的特征值为实数.,证明,一、对称矩阵的性质,说明:本节所提到的对称矩阵,除非特别说 明,均指实对称矩阵,于是有,两式相减,得,定理1的意义,证明,定理5.9,它们的重数依次为,根据上述定理可得:,定理,定理5.10,由于不同特征值的特征向量正交,,这样的特征向量共可得 个.,故这 个单位特征向量两两正交.,以它们为列向量构成正交矩阵 ,则,根据上述结论,利用正交矩阵将对称矩阵化 为对角矩阵,其具体步骤为:,二、利用正交矩阵将对称矩阵对角。</p><p>3、1,4 实对称矩阵的相似矩阵,一、实对称矩阵的特征值的有关性质,二、求正交矩阵的方法,2,对称阵,此时 A 称为实对称矩阵.,性质1. 实对称阵的特征值全为实数.,一、实对称矩阵的特征值的有关性质,3,性质2.,证明:,4,定理八.,那么,其最大线,性无关组所包含的向量个数恰为k.,推论. 实对称矩阵必与对角矩阵相似.,定理九.若A为n阶实对称阵,则总有正交,阵P,使,5,二、求正交矩阵的方法。</p>
【实对称矩阵的相似矩阵】相关PPT文档
实对称矩阵的相似矩阵.ppt
实对称矩阵的相似矩阵2.ppt
线性代数 第四节 实对称矩阵的相似矩阵.ppt
线性代数 第五章 二次型 第四节 实对称矩阵的相似矩阵.ppt
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!