随机变量及其分布练习
第二、三章 随机变量及其概率分布 习题课 • 离散型随机变量 • 随机变量的分布函数 • 连续型随机变量 • 一维随机变量函数的分布 • 二维随机变量的联合分布 • 多维随机变量的边缘分布与独立性 • 多维随机变量函数的分布 内 容 关于随机变量(及向量)的研究。能计算简单离散型随机变量的均值、方差。
随机变量及其分布练习Tag内容描述:<p>1、第二、三章 随机变量及其概率分布 习题课 离散型随机变量 随机变量的分布函数 连续型随机变量 一维随机变量函数的分布 二维随机变量的联合分布 多维随机变量的边缘分布与独立性 多维随机变量函数的分布 内 容 关于随机变量(及向量)的研究,是概率论的中心内 容这是因为,对于一个随机试验,我们所关心的 往往是与所研究的特定问题有关的某个或某些量, 而这些量就是随机变量也可以说:随机事件是从 静态的观点来研究随机现象,而随机变量则是一种 动态的观点,一如数学分析中的常量与变量的区分 那样变量概念是高等数学有别于初等数学的基。</p><p>2、1理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性 2理解超几何分布及其导出过程,并能进行简单的应用 3了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题 4理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际 问题 5利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义 1以应用题为背景命题,考查离散型随机变量的分布列、均值及某范围内的概率相互独立事件同时发生的。</p><p>3、第二章 随机变量及其分布习题一 、填空题1. 设随机变量的分布律为(K=1,2, ),则常数 。2. 盒内有5个零件,其中2件次品,从中任取3件,用表示取出的次品数,则的概率分布为 。3.设是离散型随机变量的分布函数,若,则成立。4.设离散型随机变量的分布函数为 ,且,则5. 设连续型随机变量的概率密度为则 6. 设5个晶体管中有2个次品,3个正品,如果每次从中任取1个进行测试,测试后的产品不放回,直到把2个次品都找到为止,则需要进行的测试次数是一个随机变量,则7. 设随机变量的概率密度为(),则 。8. 两个随机变量相互独立的充要条件是9。</p>