




文档简介
GJOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007789798JOURNALOFMECHANICALSCIENCEANDTECHNOLOGYMICROGENETICALGORITHMBASEDOPTIMALGATEPOSITIONINGININJECTIONMOLDINGDESIGNJONGSOOLEE,JONGHUNKIMSCHOOLOFMECHANICALENGINEERINGYONSEIUNIVERSITY,SEOUL120749KOREAMANUSCRIPTRECEIVEDDECEMBER12,2006REVISEDMARCH26,2007ACCEPTEDMARCH26,2007ABSTRACTTHEPAPERDEALSWITHTHEOPTIMIZATIONOFRUNNERSYSTEMININJECTIONMOLDINGDESIGNTHEDESIGNOBJECTIVEISTOLOCATEGATEPOSITIONSBYMINIMIZINGBOTHMAXIMUMINJECTIONPRESSUREATTHEINJECTIONPORTANDMAXIMUMPRESSUREDIFFERENCEAMONGALLTHEGATESONAPRODUCTWITHCONSTRAINTSONSHEARSTRESSAND/ORWELDLINETHEANALYSISOFFILLINGPROCESSISCONDUCTEDBYAFINITEELEMENTBASEDPROGRAMFORPOLYMERFLOWMICROGENETICALGORITHMMGAISUSEDASAGLOBALOPTIMIZATIONTOOLDUETOTHENATUREOFINHERENTNONLINEARLITYINFLOWANALYSISFOURDIFFERENTDESIGNAPPLICATIONSININJECTIONMOLDSAREEXPLOREDTOEXAMINETHEPROPOSEDDESIGNSTRATEGIESTHEPAPERSHOWSTHEEFFECTIVENESSOFMGAINTHECONTEXTOFOPTIMIZATIONOFRUNNERSYSTEMININJECTIONMOLDINGDESIGNGKEYWORDSMICROGENETICALGORITHMDESIGNOPTIMIZATIONFILLINGINJECTIONMOLD1INTRODUCTIONINJECTIONMOLDINGPROCESSHASBEENRECOGNIZEDASONEOFTHEMOSTEFFICIENTMANUFACTURINGTECHNOLOGIESSINCEHIGHPERFORMANCEPOLYMERMATERIALSCANBEUTILIZEDTOACCURATELYMANUFACTUREAPRODUCTWITHCOMPLICATEDSHAPECHIANG,ETAL,1991CHANGANDYANG,2001HIMASEKHAR,ETAL,1992KWONANDPARK,2004ALSO,THEDEMANDONINJECTIONMOLDEDPRODUCTSSUCHASFROMCONVENTIONALPLASTICGOODSTOMICROOPTICALDEVICESISBEINGDRAMATICALLYINCREASEDOVERTHERECENTYEARSPIOTTER,ETAL,2001KANG,ETAL,2000INGENERAL,THEINJECTIONMOLDPROCESSISINITIATEDBYTHEFILLINGSTAGEWHERETHEPOLYMERMATERIALSFILLINTOACAVITYUNDERTHEINJECTIONTEMPERATUREAFTERTHECAVITYISCOMPLETELYFILLED,THEPOSTFILLINGSTAGE,THATIS,THEPACKINGSTAGEISCONDUCTEDTOBEADDITIONALLYFILLEDWITHTHEHIGHPRESSUREPOLYMER,THEREBYRESULTINGINTHEAVOIDANCEOFMATERIALSHRINKAGESUBSEQUENTLY,THECOOLINGSTAGEISREQUIREDFORAMOLDEDPRODUCTTOBEEJECTEDWITHOUTANYDEFORMATIONITISIMPORTANTTOACCOMMODATETHEMOLDINGCONDITIONSINTHEFILLINGSTAGESINCEITISTHEFIRSTSTAGEINTHEOVERALLINJECTIONMOLDINGDESIGNZHOUANDDLI,2001AFTERTHAT,ONECANSUCCESSFULLYEXPECTMOREIMPROVEDMOLDINGCONDITIONSDURINGPOSTFILLINGSTAGESSUCHASPACKING,COOLINGSTAGESTHEPAPERDEALSWITHOPTIMALCONDITIONSOFTHEFILLINGINJECTIONMOLDINGDESIGNINWHICHTHEFLOWPATTERNANDPRESSUREFORTHEPOLYMERMATERIALSTOBEFILLEDTHROUGHGATESOFARUNNERAREOFSIGNIFICANTTHATIS,ONEOFDESIGNREQUIREMENTSARESUCHTHATWHENTHEPOLYMERCOMESINTOACAVITYTHROUGHANUMBEROFGATESLOCATEDATDIFFERENTPOSITIONS,PRESSURELEVELSONTHESURFACEOFAPRODUCTSHOULDBEASUNIFORMASPOSSIBLESUCHDESIGNCANBEPERFORMEDTHROUGHTHEINTELLIGENTGATEPOSITIONINGTOGENERATETHEMORECORRESPONDINGAUTHORTEL82221234474FAX8223622736EMAILADDRESSJLEEJYONSEIACKR790JONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007740749UNIFORMDISTRIBUTIONOFINJECTIONPRESSUREOVERTHEPRODUCTSURFACETHEREHAVEBEENANUMBEROFSTUDIESOFOPTIMALGATELOCATIONINTHECONTEXTOFCAEFILLINGINJECTIONMOLDINGDESIGNPROBLEMSWHEREVARIOUSKINDSOFOPTIMIZERHAVEBEENEMPLOYEDTOCONDUCTDESIGNOPTIMIZATIONKIMETAL,1996YOUNG,1994PANDELIDISANDZOU,2004LIN,2001LIANDSHEN,1995THEPAPEREXPLORESTHEDESIGNOFINJECTIONMOLDSYSTEMUSINGMICROGENETICALGORITHMMGAGENETICALGORITHMCONVENTIONALGAISBASEDONTHEDARWINSTHEORYOFTHESURVIVALOFTHEFITTEST,ANDADOPTSTHECONCEPTOFNATURALEVOLUTIONTHECOMPETITIVEDESIGNSWITHMOREFITARESURVIVEDBYSELECTION,ANDTHENEWDESIGNSARECREATEDBYCROSSOVERANDMUTATIONLEE,1996LEEANDHAJELA,1996ACONVENTIONALGAWORKSWITHAMULTIPLENUMBEROFDESIGNSINAPOPULATIONHANDLINGWITHSUCHDESIGNSRESULTSININCREASINGAHIGHERPROBABILITYOFLOCATINGAGLOBALOPTIMUMASWELLASMULTIPLELOCALOPTIMAGAISALSOADVANTAGEOUSWHENTHEDESIGNPROBLEMISREPRESENTEDBYAMIXTUREOFINTEGER/DISCRETEANDCONTINUOUSDESIGNVARIABLESNEVERTHELESS,ITREQUIRESEXPENSIVECOMPUTATIONALCOSTSESPECIALLYWHENCOMBININGWITHFINITEELEMENTBASEDCAEANALYSISTOOLSACONVENTIONALGADETERMINESTHEPOPULATIONSIZEDEPENDINGUPONTHESTRINGLENGTHOFACHROMOSOMETHATISACODEDVALUEOFASETOFDESIGNVARIABLESTHEMAINDIFFERENCEBETWEENACONVENTIONALGAANDMGARESIDESONTHEPOPULATIONSIZETHEPOPULATIONSIZEINMGAISBASEDONGOLDBERGSCONCEPTSUCHTHATEVOLUTIONPROCESSISPOSSIBLEWITHSMALLPOPULATIONSTOREDUCETHECOSTOFFITNESSFUNCTIONEVALUATIONGOLDBERG,1988THISIMPLIESTHATMGAEMPLOYSAFEWNUMBEROFPOPULATIONSFORGAEVOLUTIONREGARDLESSOFTHENUMBEROFDESIGNVARIABLESANDTHECOMPLEXITYOFDESIGNPARAMETERSKRISHNAKUMAR,1989DENNISANDDULIKRAVICH,2001THEPAPERDISCUSSESTHEDESIGNREQUIREMENTSOFFILLINGINJECTIONMOLDOPTIMIZATIONTOCONSTRUCTTHEPROPEROBJECTIVEFUNCTIONSANDDESIGNCONSTRAINTSFOURDIFFERENTDESIGNAPPLICATIONSININJECTIONMOLDSAREEXPLOREDTOEXAMINETHEPROPOSEDDESIGNSTRATEGIESTHEPAPERSHOWSTHEEFFECTIVENESSOFMGAINTHECONTEXTOFOPTIMIZATIONOFRUNNERSYSTEMININJECTIONMOLDINGDESIGN2MOLDFLOWANALYSISTHEFLOWOFAPOLYMERININJECTIONMOLDINGPROCESSOBEYSTHEFOLLOWINGGOVERNINGEQUATIONS220PPSSXXYYWWWWWWWW1222PXYTTTTCKTXYZUQQKJWWWWWWWW2WHERE,220HZSDZKINTHEABOVEEQUATIONS,PISAFLOWPRESSURE,TISATEMPERATUREOFPOLYMER,ANDTISDENOTEDASTIMEPARAMETERSK,J,ANDKAREVISCOSITY,SHEARRATEANDTHERMALCONDUCTIVITY,RESPECTIVELYLEE,2003ITISASSUMEDTHATPOLYMERISANONCOMPACTIONSUBSTANCEINTHEFILLINGANALYSISTHEFLOWANALYSISINTHEPRESENTSTUDYISCONDUCTEDBYCOMPUTERAIDEDPLASTICSAPPLICATIONCAPAKOO,2003,AFINITEELEMENTBASEDCOMMERCIALCODEFORPOLYMERFLOWOFINJECTIONMOLDINGTHERUNNERSYSTEMININJECTIONMOLDCOVERSTHEPASSAGEOFMOLTENPOLYMERFROMINJECTIONPORTTOGATESTHEPRESENTSTUDYDEVELOPSTWODIFFERENTRUNNERSYSTEMSWHEREACOLDSYSTEMREQUIRESTHECHANGEINPOLYMERTEMPERATURE,ANDAHOTSYSTEMKEEPITUNCHANGEDWHILETHEFLOWPASSESTHROUGHTHERUNNERFORTHEHOTRUNNERSYSTEMHASAGEOMETRICALLYCONSISTENTTHICKNESSDUETOTHECONSTANTTEMPERATUREASSHOWNINFIG1AHOWEVER,THECAERESULTOFACOLDRUNNERSYSTEMDEPENDSONTHETHICKNESSANDSHAPETABLE1TENBARTRUSSDESIGNRESULTSMICROGACONVENTIONALGACASE1CASE2CASE3CASE1CASE2CASE3REFERENCE20X1786815785815730781790X2041018019010083045010X3838799815820877837810X4505383389397327416390X5012096015110075055010X6041025025010082030010X7641567587584674630580X8523629552568506526551X9383385505507289386368OPTIMALAREAX10050025025040116042014OPTIMALWEIGHT1599158715881593159015851499OFFUNCTIONEVALUATIONS575405423025335788946949773533JONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007789798791AHOTRUNNERSYSTEMBCOLDRUNNERSYSTEMFIG1MODELINGOFRUNNERSYSTEMSHAPEOFARUNNERTHETYPICALILLUSTRATIONOFTHEGEOMETRICMODELINACOLDRUNNERSYSTEMISSHOWNINFIG1BWHERETHERUNNERTHICKNESSISCHANGEDACCORDINGTOTHETEMPERATUREGRADIENT3MOLDINGDESIGNREQUIREMENTS31OBJECTIVEFUNCTIONSONEOFTHEMOSTSIGNIFICANTFACTORSCONSIDEREDINTHEINJECTIONMOLDINGDESIGNISAFLOWPATTERN,WHICHIMPLIESTHATABALANCEDFLOWSHOULDBEMAINTAINEDWHILEAPOLYMERARRIVESATEACHPARTOFADESIGNPRODUCTONCETHEIMPROVEMENTONFLOWBALANCEISOBTAINED,THEFLOWOFMOLTENPOLYMERSMOOTHESANDTHEMAXIMUMINJECTIONPRESSUREISDECREASEDWITHTHESAMEORATLEASTEVENLYDISTRIBUTEDINJECTIONPRESSURELEVELATEACHGATEINACASEWHERETHECERTAINPARTOFAPRODUCTWITHINTHEMOLDISFILLEDUPEARLIERTHANOTHERPARTS,EACHPARTWOULDFALLINTOOVERPACKINGANDUNDERPACKINGSITUATIONSDURINGTHEFILLINGPROCESSOFAPOLYMERINTOMOLDSUCHPROBLEMFURTHEREVOKESAMALFORMATIONLIKETWISTINGANDBENDING,RESULTINGFROMTHEDIFFERENCEINCONTRACTIONRATEDURINGTHECOURSEOFCOOLINGOFFTHEDIFFERENCEINPRESSURETRIGGERSTHEFLOWOFPOLYMERDURINGTHEFILLINGPROCESS,INWHICHTHEMAXIMUMINJECTIONPRESSUREISDETECTEDATTHEINJECTIONPORTOFPOLYMERTHEPOLYMERALWAYSFLOWSFROMHIGHPRESSUREREGIONTOLOWPRESSUREONEWHENAFLOWPATTERNIMPROVES,THEFLOWOFPOLYMERGETSSMOOTHERWITHTHEMAXIMUMINJECTIONPRESSUREDECREASEDHOWEVER,THEFLOWINSTABILITYSOMETIMESHAPPENS,THEREBYREQUIRINGAHIGHERPRESSURETOFILLUPTHATIS,THEMAXIMUMINJECTIONPRESSURENEEDSTOBEREDUCEDINORDERTOIMPROVETHEFLOWINSTABILITYTHEPRESSUREGAPIE,THEHIGHESTANDLOWESTPRESSUREVALUESAMONGALLOFGATESISALSOTAKENASANOTHEROBJECTIVEFUNCTIONTODETERMINEWHETHERTHEWHOLEMOLDISBEINGFILLEDATONCEMOSTCOMMONLYACCEPTEDDESIGNSTRATEGYTOIMPROVETHEFLOWPATTERNISTHEADJUSTMENTOFGATELOCATIONTHEPRESENTSTUDYCONTROLSTHEFLOWPATTERNBYDEVELOPINGTHEOPTIMALGATEPOSITIONINGPROBLEMSWITHPROPEROBJECTIVEFUNCTIONSANDDESIGNCONSTRAINTSOBJECTIVEFUNCTIONSFORINJECTIONMOLDINGDESIGNARECONSIDEREDASBOTHMAXIMUMINJECTIONPRESSUREMIPANDMAXIMUMPRESSUREDIFFERENCEMPDITSHOULDBENOTEDTHATTHEMAXIMUMINJECTIONPRESSUREISCALCULATEDATTHEINJECTIONPORTANDTHEMAXIMUMPRESSUREDIFFERENCEISANUMERICALDIFFERENCEBETWEENTHEHIGHESTANDLOWESTVALUESOFPRESSUREAMONGALLOFGATESTHEAFOREMENTIONEDSTATEMENTSCOULDBEINTERPRETEDASAMULTIOBJECTIVEDESIGNPROBLEM,HENCETHEPRESENTSTUDYSIMPLYEMPLOYSAWEIGHTINGMETHODASFOLLOWSMIPXMPDXFXMIPMPDDE3WHERE,DANDEAREWEIGHTINGFACTORSASDE1,ANDXISASETOFDESIGNVARIABLESWHICHARECARTESIANCOORDINATESOFGATESONAPRODUCTEACHCOMPONENTINTHEABOVEEQUATIONISNORMALIZEDBYOPTIMALSINGLEOBJECTIVEFUNCTIONVALUE,IE,MIP,MPDITISMENTIONEDTHATTHENUMBEROFGATESISCONSIDEREDASAPROBLEMPARAMETERINTHESTUDY31CONSTRAINTSWELDLINESAREEASILYDETECTEDWHENMORETHANTWOFLOWFRONTSHAVINGDIFFERENTTEMPERATUREVALUESMEETDURINGTHEFILLINGPROCESSTHEWELDLINEISONEOFTHEWEAKESTPOINTSINMOLDEDPRODUCTITISVERY792JONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007740749VULNERABLETOASHOCKANDSUBSEQUENTLYCAUSESEXTERNALDEFECTSOFAVERYGLOSSYPOLYMERTHEWELDLINESHOULDBEMOVEDINTOALESSWEAKREGIONBYADJUSTINGTHEWIDTHOFAPRODUCT,THESIZEAND/ORSHAPEOFGATESANDRUNNERS,ANDTHEPOSITIONOFGATES,ETCTHEPRESENTSTUDYCONSIDERSTHEPOSITIONOFAWELDLINEASACONSTRAINTINOPTIMALGATEPOSITIONINGOFMOLDDESIGNONCEADESIGNERSPECIFIESAREASWHEREWELDLINESSHOULDNOTBEGENERATED,ALLOFTHEFINITEELEMENTNODESINSUCHAREASARECONSTRAINEDNOTTOFORMTHEWELDLINESSHEARSTRESSISDEFINEDASASHEARFORCEIMPOSEDONTHEWALLOFAMOLDBYTHESHEARFLOWOFAPOLYMERTHEMAGNITUDEOFSHEARSTRESSISPROPORTIONALTOTHEPRESSUREGRADIENTOFEACHPOSITIONINGENERAL,THESHEARSTRESSISZEROATTHECENTEROFAMOLDEDPRODUCT,ANDREACHESAMAXIMUMVALUEONTHEWALLHIGHSHEARSTRESSTRIGGERSTHEMOLECULECULTIVATIONONTHESURFACEOFAMOLDEDPRODUCTFLOWINSTABILITYSUCHASMELTFRACTUREHASACLOSERELATIONSHIPWITHTHESHEARSTRESSTHECLEARSURFACEOFAMOLDEDPRODUCTCANBEOBTAINEDBYREDUCINGTHEMAGNITUDEOFSHEARSTRESSTHATIS,SHEARSTRESSSHOULDBEMINIMIZEDDURINGTHEMOLDFILLINGPROCESSINORDERTOIMPROVETHEQUALITYOFAMOLDEDPRODUCT,PARTICULARLYONITSSURFACEMAXIMUMALLOWABLESHEARSTRESSDEPENDSONTHEKINDSOFPOLYMER,ANDISGENERALLYTAKENAS1OFTENSILESTRENGTHOFAPOLYMERSHEARSTRESSAFFECTINGTHEQUALITYOFENDPRODUCTISCONSIDEREDASANOTHERCONSTRAINT33FORMULATIONOFOPTIMIZATIONPROBLEMTHESTATEMENTOFAMOLDDESIGNOPTIMIZATIONPROBLEMCANBEWRITTENASFOLLOWSFIND12,NXIJKXIJKXIJKXIJK4TOMINIMIZEMIPXMPDXFXMIPMPDDE5SUBJECTTOSHEARSTRESSI,J,KSHEARSTRESSALLOWABLE6WELDLINEI,J,KDESIGNATEDAREASONLY7WHERE,LOWERUPPERXXXDDASETOFDESIGNVARIABLES,XARECARTESIANCOORDINATESI,J,KOFGATESONTHESURFACEOFAMOLDEDPRODUCT,WHERENISTHENUMBEROFGATESATRADITIONALWEIGHTEDSUMMETHODINTHECONTEXTOFMULTIOBJECTIVEOPTIMIZATIONISEMPLOYEDBYUSINGTWOWEIFIG2MICROGAPROCESSGHTINGFACTORSOFDANDE,WHEREDE1MULTIOBJECTIVEFUNCTIONSCONSIDEREDINTHEPRESENTSTUDYAREMAXIMUMINJECTIONPRESSUREMIPMEASUREDATTHEINJECTIONPORTANDMAXIMUMPRESSUREDIFFERENCEPDAMONGALLOFGATESTHECONSTANTS,MIPANDMPDAREOPTIMALOBJECTIVEFUNCTIONVALUESOBTAINEDVIASINGLEOBJECTIVEOPTIMIZATIONTHEPERMISSIONOFWELDLINESTODESIGNATEDAREASONLYANDTHEUPPERLIMITSONSHEARSTRESSAREIMPOSEDASDESIGNCONSTRAINTSTHEFLOWPATTERNANALYSISISPERFORMEDBYCAPAASMENTIONEDINTHEEARLIERSECTION,ANDTHEOPTIMIZATIONISCONDUCTEDTHROUGHMGAITSHOULDBENOTEDTHATCARTESIANCOORDINATESI,J,KISRECOGNIZEDASNODALPOINTSWHENAMOLDEDPRODUCTISDISCRETIZEDBYFINITEELEMENTSINCAPA4MICROGATHEOVERALLPROCESSOFMGAINTHEPRESENTSTUDYISDEPICTEDINFIG2,ANDASTEPWISEPROCEDURECANBEEXPLAINEDASFOLLOWSSTEP1GENERATEANINITIALPOPULATIONATRANDOMTHERECOMMENDEDPOPULATIONSIZEIS3,5,OR7STEP2PERFORMACONVENTIONALGAEVOLUTIONUNTILTHENOMINALCONVERGENCEISSATISFIEDINTHEPRESENTSTUDY,THEPOPULATIONSIZEISSELECTEDAS5,ANDATOURNAMENTSELECTIONOPERATORISUSEDTHECROSSOVERPROBABILITYINMGAIS10DUETOTHESMALLSIZEINPOPULATION,WHILEACONVENTIONALGAISPREFERREDTOUSEITLESSTHAN10THENOMINALCONVERGENCEMEANSTHATTHEDIFFERENCEOF1SAND/OR0SAMONGSTRINGPOSITIONSISWITHIN5OUTOFTHESTRINGLENGTH,THEREBYRESULTINGINTHECONVERGENCETOALOCALSOLUTIONSTEP3DURINGTHEUSERSPECIFIEDNUMBEROFGENERATIONS,ANEWPOPULATIONISUPDATEDONEINDIVIDUALISSELECTEDBYELITISMTHEREMAININGINDIVIDUALSINAJONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007789798793NEWPOPULATIONAREGENERATEDATRANDOMITSHOULDBENOTEDTHATTHESELECTIONOPERATIONADOPTSTOURNAMENTFORACTIVATINGTHEDIVERSITYANDELITISMFORKEEPINGTHEBESTSOLUTIONSINCETHEUPDATEDPOPULATIONSEXCEPTFORTHEELITISMAREGENERATEDATRANDOM,MGASELDOMCONSIDERSTHEMUTATIONBFAABIAACBAACEAACHAADAAAABAAAACAAAADAAAAEAAAAFAAAAGAAAAHAAAAIAAAAN_FUNCTIONOBJECTIVEAACONVENTIONALGABFAABIAACBAACEAACHAADAAAABAAAACAAAADAAAAEAAAAFAAAAGAAAAHAAAAIAAAAN_FUNCTIONOBJECTIVEBMICROGAFIG3CONVERGENCEHISTORIESOFTENBARTRUSSPROBLEMGFIG4SEVENDISCRETEDESIGNSPACESFORVEHICLEDASHBOARDPROBLEMFIG5INITIALGATELOCATIONOFVEHICLEDASHBOARDINSUMMARY,MGAENABLESTOLOCATEANOPTIMALSOLUTIONTHANKSTOTHESMALLSIZEOFPOPULATIONS,TOURNAMENTANDELITISMOPERATIONSINSELECTION,ANDTHEFULLPARTICIPATIONINCROSSOVERHOWEVER,MGAHASADRAWBACKUPONFINDINGONEOFMULTIPLELOCALOPTIMAONLYDUETOTHESMALLSIZEOFPOPULATIONSANDTHENOMINALCONVERGENCESTRATEGYACONVENTIONALGAISSUPERIORTOMAINTAININGTHEDIVERSITYWHILEMGAISADVANTAGEOUSOFSAVINGSINCOMPUTATIONALRESOURCEREQUIREMENTS41TRUSSDESIGNTHEPROPOSEDMGAISVERIFIEDBYATYPICALTENBARPLANARTRUSSOPTIMIZATIONPROBLEMTHEOBJECTIVEISTOFINDOPTIMALCROSSSECTIONALAREASBYMINIMIZINGTHESTRUCTURALWEIGHTSUBJECTEDTOSTRESSCONSTRAINTSHAFTKAANDGURDAL,1993OPTIMALSOLUTIONSAREOBTAINEDVIAMGAANDACONVENTIONALGATOCOMPAREWITHEACHOTHERTHEPOPULATIONSIZEINMGAIS5,WHILEACONVENTIONALGAREQUIRES250INDIVIDUALSINAPOPULATIONSINCETHESTRINGLENGTHINTHISPROBLEMIS100CROSSOVERANDMUTATIONPROBABILITIESINACONVENTIONALGAUSEDARE08AND001,RESPECTIVELYAFTERTWOGENETICSEARCHMETHODSARECONDUCTEDTENTIMESBYCHANGINGRANDOMLYGENERATEDINITIALPOPULATIONS,THEMOSTFITDESIGNRESULTSAREDEMONSTRATEDINTABLE1THECONVERGENCEHISTORYFOREACHOPTIMIZERDEMONSTRATESTHATMGAPRODUCESTHEBETTERDESIGNANDLOCATESTHENEAROPTIMALSOLUTIONATTHEEARLIERSTAGEOFEVOLUTIONINFIG35RESULTSOFDESIGNAPPLICATIONS51VEHICLEDASHBOARDAPASSENGERCARINPANELHASBEENFIRSTEXAMINEDTHISMODELISSUPPOSEDTOHAVE7GATES,ANDDESIGNSPACESFORUSEINGENETICEVOLUTIONARESHOWNINFIG4OBJECTIVEFUNCTIONSOFMIPANDMPDARETAKENINTOACCOUNT,BUTNOCONSTRAINTSAREIMPOSEDINTHISMODELTHEINITIALDESIGNISSHOWNINFIG5THISDESIGNHASBEENOBTAINEDTHROUGHEXPERIENCEANDTRIALANDERRORSINANAUTOMOTIVEPARTMOLDINGCOMPANYOPTIMIZEDRESULTSBYMGAARESHOWNINFIGS6TO8,WHOSEOBJECTIVEFUNCTIONSWERECONSIDEREDASMIPONLY,MPDONLYANDBOTHMIPANDMPD,RESPECTIVELYDESIGNRESULTSFOREACHCASEARESUMMARIZEDINTABLE2ASWELLITISNOTEDTHATBOTHMIPANDMPDISCALCULATEDWITHDCHANGINGFROM00TO10WITHANINCREMENTOF01WHILEKEEPINGDE0794JONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007740749FIG6OPTIMIZEDDESIGNOFVEHICLEDASHBOARDMIPONLYFIG7OPTIMIZEDDESIGNOFVEHICLEDASHBOARDMPDONLYFIG8OPTIMIZEDDESIGNOFVEHICLEDASHBOARDBOTHMIPANDMPDINCASEOFMIPONLYINFIG6,THEMAXIMUMINJECTIONPRESSUREVALUEHASANIMPROVEMENTOF239COMPAREDWITHANINITIALMODEL,BUTTHEPRESSUREDISTRIBUTIONONTHEPRODUCTBECOMESWORSE,RESULTINGINOVERPACKINGONTHELEFTREGIONWHENACASEOFMPDONLYISCONSIDERED,THEDESIGNPERFORMANCEINFIG7ISACHIEVEDINTERMSOFNOTONLYMAXIMUMPRESSUREDIFFERENCEBUTALSOMAXIMUMINJECTIONPRESSUREASSHOWNITISEXPECTEDTHATTHEFLOWGETSSMOOTHERDURINGTHEIMPROVEMENTOFPRESSUREDISTRIBUTION,ANDTHEMAXIMUMINJECTIONPRESSUREISDECREASEDASWELLINCASEOFBOTHMIPANDMPDINFIG8,ITSRESULTISQUITESIMILARTOACASETABLE2OPTIMIZATIONRESULTSOFVEHICLEDASHBOARDMAXIMUMPRESSUREMPAMAXIMUMDIFFERENCEMPAINITIALDESIGN242692026MIPONLY184733508MPDONLY231221244OBJECTIVEBOTHMIPANDMPD229921258TABLE3OPTIMIZATIONRESULTSOFTVMONITORMAXIMUMPRESSUREMPAMAXIMUMDIFFERENCEMPASHEARSTRESS05MPAINITIALDESIGN80551371045MIPONLY6846406043MPDONLY7227304045OBJECTIVEBOTHMIPANDMPD6846406043OFMPDONLYINTERMSOFGATELOCATIONSFROMFIGS7AND8ANDTHEPERCENTILEIMPROVEMENTINTABLE2AWEIGHTEDSUMMETHODISUSEDTOOBTAINTHEMULTIOBJECTIVEOPTIMALSOLUTIONSBYCHANGINGDANDESIMULTANEOUSLY,BUTYIELDSTHESAMERESULTSOUTOFATOTALOF11WEIGHTINGFACTORBASEDTRIALSTHEREASONWHYAFEWNUMBEROFPARETOSOLUTIONSAREDETECTEDISSUCHTHATTHEMAXIMUMPRESSUREISNOTCOUNTERTOPRESSUREDISTRIBUTIONINTHEFILLINGINJECTIONMOLDINGINOTHERWORDS,WHENTHEOVERALLPRESSUREDISTRIBUTIONISIMPROVEDTHANKSTOTHEENHANCEMENTOFFLOWBALANCEANDTHESMOOTHNESSOFPOLYMERFLOW,THEMAXIMUMPRESSUREISCONSEQUENTLYDECREASEDASFARASTHEPRESSUREDISTRIBUTIONOFAMODELEDPRODUCTISCONCERNED,THECHANGEINGATEPOSITIONISNOTICEABLEGATE_5OFOPTIMIZEDMODELSMOVESFROMRIGHTTOLEFTREGIONCOMPAREDWITHANINITIALMODEL52TVMONITORTHEMODELOFATVMONITOREQUIPPEDWITH4GATESISNOWOPTIMIZEDUSINGOBJECTIVEFUNCTIONSANDTHEUPPERLIMITONSHEARSTRESSCONSTRAINT,WHERETHESHEARSTRESSALLOWABLEIS05MPATHEINITIALDESIGNWITH4DISCRETEDESIGNSPACESISDISPLAYEDINFIG9,ANDOPTIMIZEDPRESSUREDISTRIBUTIONSARESHOWNINFIGS10AND11DESIGNRESULTSFORSINGLEOBJECTIVEANDMULTIOBJECTIVEOPTIMIZATIONARETABULATEDINTABLE3INCASEOFMIPONLYGENERATESTHESAMERESULTASWEIGHTINGMETHODBASEDMULTIOBJECTIVESOLUTIONSOFBOTHMIPANDMPDINCASEOFMPDONLY,THEMAXIJONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007789798795FIG9INITIALGATELOCATIONOFTVMONITORFIG10OPTIMIZEDDESIGNOFTVMONITORMPDONLYFIG11OPTIMIZEDDESIGNOFTVMONITORMIPONLYBOTHMIPANDMPDMUMINJECTIONPRESSUREANDMAXIMUMPRESSUREDIFFERENCEHAVEBEENIMPROVEDBY103AND778,RESPECTIVELYITISEXPECTEDTHATTHEENHANCEMENTONFLOWBALANCEANDSMOOTHNESSMAYBEMADEPOSSIBLEBYOPTIMIZINGTHEGATEPOSITIONS53CDTRAYTHECDTRAYUSEINALAPTOPCOMPUTERHAS4GATESFORINJECTIONMOLDINGTHEOPTIMIZATIONONTHISMODELFIG12CDTRAYLEFTANDITSINITIALGATELOCATIONRIGHTFIG13OPTIMIZEDDESIGNOFCDTRAYMIPONLYFIG14OPTIMIZEDDESIGNOFCDTRAYMPDONLYISCONDUCTEDWITHASHEARSTRESSCONSTRAINT,WHERETHEUPPERLIMITONSHEARSTRESSALLOWABLEIS15MPAINITIALANDOPTIMIZEDRESULTSFORPRESSUREDISTRIBUTIONARESHOWNINFIGS12TO15FROMTHESUMMARYOFTABLE4,THEDESIGNSOLUTIONSOFOPTIMALOBJECTIVEFUN796JONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007740749FIG15OPTIMIZEDDESIGNOFCDTRAYBOTHMIPANDMPDTABLE4OPTIMIZATIONRESULTSOFCDTRAYMAXIMUMPRESSUREMPAMAXIMUMDIFFERENCEMPASHEARSTRESS15MPAINITIALDESIGN82661192122MIPONLY73917085126MPDONLY80440332112OBJECTIVEBOTHMIPANDMPD78790376114CTIONVALUESINTHISPROBLEMAREQUITESIMILARTOTHATINTHEVEHICLEDASHBOARDINCASEOFMIPONLY,THEMAXIMUMPRESSUREDIFFERENCEVALUEGETSWORSETH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 轨道交通人才选拔全攻略:龙潭地铁面试题库精 编版指南
- 2026年高考英语复习新题速递之信息匹配(2025年7月)
- 知识题库-餐饮服务食品安全管理人员考试题目及答案
- 社会信用体系下信贷市场的效率提升
- 第1章三角形的初步知识2017年秋滚动阶段测试1416及答案
- 牙科口腔医院综合服务体系
- 八年级地理铁路路线图
- 山西省山西大学附属中学2026届化学高二第一学期期中联考模拟试题含解析
- 托幼园创建汇报
- 食管癌指南讲解
- 高一地质灾害课件
- 2024-2030年中国南美白对虾养殖市场规模分析及发展风险研究报告权威版
- 综合行政执法培训
- 网络数据安全管理条例培训2024
- 白班阿姨合同范例
- 口腔门诊合作模式的合同范本
- 全国高中生物奥林匹克竞赛考试大纲
- 消防安全评估报告模板
- 公司汽车租赁合同书协议书书范本
- 张燕芳《国际贸易实务》(第5版)-电子课件示例(第4章)-已认证老师可下
- 育苗温室钢架棚报验技术资料(检验批)
评论
0/150
提交评论