文档简介
GJOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007789798JOURNALOFMECHANICALSCIENCEANDTECHNOLOGYMICROGENETICALGORITHMBASEDOPTIMALGATEPOSITIONINGININJECTIONMOLDINGDESIGNJONGSOOLEE,JONGHUNKIMSCHOOLOFMECHANICALENGINEERINGYONSEIUNIVERSITY,SEOUL120749KOREAMANUSCRIPTRECEIVEDDECEMBER12,2006REVISEDMARCH26,2007ACCEPTEDMARCH26,2007ABSTRACTTHEPAPERDEALSWITHTHEOPTIMIZATIONOFRUNNERSYSTEMININJECTIONMOLDINGDESIGNTHEDESIGNOBJECTIVEISTOLOCATEGATEPOSITIONSBYMINIMIZINGBOTHMAXIMUMINJECTIONPRESSUREATTHEINJECTIONPORTANDMAXIMUMPRESSUREDIFFERENCEAMONGALLTHEGATESONAPRODUCTWITHCONSTRAINTSONSHEARSTRESSAND/ORWELDLINETHEANALYSISOFFILLINGPROCESSISCONDUCTEDBYAFINITEELEMENTBASEDPROGRAMFORPOLYMERFLOWMICROGENETICALGORITHMMGAISUSEDASAGLOBALOPTIMIZATIONTOOLDUETOTHENATUREOFINHERENTNONLINEARLITYINFLOWANALYSISFOURDIFFERENTDESIGNAPPLICATIONSININJECTIONMOLDSAREEXPLOREDTOEXAMINETHEPROPOSEDDESIGNSTRATEGIESTHEPAPERSHOWSTHEEFFECTIVENESSOFMGAINTHECONTEXTOFOPTIMIZATIONOFRUNNERSYSTEMININJECTIONMOLDINGDESIGNGKEYWORDSMICROGENETICALGORITHMDESIGNOPTIMIZATIONFILLINGINJECTIONMOLD1INTRODUCTIONINJECTIONMOLDINGPROCESSHASBEENRECOGNIZEDASONEOFTHEMOSTEFFICIENTMANUFACTURINGTECHNOLOGIESSINCEHIGHPERFORMANCEPOLYMERMATERIALSCANBEUTILIZEDTOACCURATELYMANUFACTUREAPRODUCTWITHCOMPLICATEDSHAPECHIANG,ETAL,1991CHANGANDYANG,2001HIMASEKHAR,ETAL,1992KWONANDPARK,2004ALSO,THEDEMANDONINJECTIONMOLDEDPRODUCTSSUCHASFROMCONVENTIONALPLASTICGOODSTOMICROOPTICALDEVICESISBEINGDRAMATICALLYINCREASEDOVERTHERECENTYEARSPIOTTER,ETAL,2001KANG,ETAL,2000INGENERAL,THEINJECTIONMOLDPROCESSISINITIATEDBYTHEFILLINGSTAGEWHERETHEPOLYMERMATERIALSFILLINTOACAVITYUNDERTHEINJECTIONTEMPERATUREAFTERTHECAVITYISCOMPLETELYFILLED,THEPOSTFILLINGSTAGE,THATIS,THEPACKINGSTAGEISCONDUCTEDTOBEADDITIONALLYFILLEDWITHTHEHIGHPRESSUREPOLYMER,THEREBYRESULTINGINTHEAVOIDANCEOFMATERIALSHRINKAGESUBSEQUENTLY,THECOOLINGSTAGEISREQUIREDFORAMOLDEDPRODUCTTOBEEJECTEDWITHOUTANYDEFORMATIONITISIMPORTANTTOACCOMMODATETHEMOLDINGCONDITIONSINTHEFILLINGSTAGESINCEITISTHEFIRSTSTAGEINTHEOVERALLINJECTIONMOLDINGDESIGNZHOUANDDLI,2001AFTERTHAT,ONECANSUCCESSFULLYEXPECTMOREIMPROVEDMOLDINGCONDITIONSDURINGPOSTFILLINGSTAGESSUCHASPACKING,COOLINGSTAGESTHEPAPERDEALSWITHOPTIMALCONDITIONSOFTHEFILLINGINJECTIONMOLDINGDESIGNINWHICHTHEFLOWPATTERNANDPRESSUREFORTHEPOLYMERMATERIALSTOBEFILLEDTHROUGHGATESOFARUNNERAREOFSIGNIFICANTTHATIS,ONEOFDESIGNREQUIREMENTSARESUCHTHATWHENTHEPOLYMERCOMESINTOACAVITYTHROUGHANUMBEROFGATESLOCATEDATDIFFERENTPOSITIONS,PRESSURELEVELSONTHESURFACEOFAPRODUCTSHOULDBEASUNIFORMASPOSSIBLESUCHDESIGNCANBEPERFORMEDTHROUGHTHEINTELLIGENTGATEPOSITIONINGTOGENERATETHEMORECORRESPONDINGAUTHORTEL82221234474FAX8223622736EMAILADDRESSJLEEJYONSEIACKR790JONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007740749UNIFORMDISTRIBUTIONOFINJECTIONPRESSUREOVERTHEPRODUCTSURFACETHEREHAVEBEENANUMBEROFSTUDIESOFOPTIMALGATELOCATIONINTHECONTEXTOFCAEFILLINGINJECTIONMOLDINGDESIGNPROBLEMSWHEREVARIOUSKINDSOFOPTIMIZERHAVEBEENEMPLOYEDTOCONDUCTDESIGNOPTIMIZATIONKIMETAL,1996YOUNG,1994PANDELIDISANDZOU,2004LIN,2001LIANDSHEN,1995THEPAPEREXPLORESTHEDESIGNOFINJECTIONMOLDSYSTEMUSINGMICROGENETICALGORITHMMGAGENETICALGORITHMCONVENTIONALGAISBASEDONTHEDARWINSTHEORYOFTHESURVIVALOFTHEFITTEST,ANDADOPTSTHECONCEPTOFNATURALEVOLUTIONTHECOMPETITIVEDESIGNSWITHMOREFITARESURVIVEDBYSELECTION,ANDTHENEWDESIGNSARECREATEDBYCROSSOVERANDMUTATIONLEE,1996LEEANDHAJELA,1996ACONVENTIONALGAWORKSWITHAMULTIPLENUMBEROFDESIGNSINAPOPULATIONHANDLINGWITHSUCHDESIGNSRESULTSININCREASINGAHIGHERPROBABILITYOFLOCATINGAGLOBALOPTIMUMASWELLASMULTIPLELOCALOPTIMAGAISALSOADVANTAGEOUSWHENTHEDESIGNPROBLEMISREPRESENTEDBYAMIXTUREOFINTEGER/DISCRETEANDCONTINUOUSDESIGNVARIABLESNEVERTHELESS,ITREQUIRESEXPENSIVECOMPUTATIONALCOSTSESPECIALLYWHENCOMBININGWITHFINITEELEMENTBASEDCAEANALYSISTOOLSACONVENTIONALGADETERMINESTHEPOPULATIONSIZEDEPENDINGUPONTHESTRINGLENGTHOFACHROMOSOMETHATISACODEDVALUEOFASETOFDESIGNVARIABLESTHEMAINDIFFERENCEBETWEENACONVENTIONALGAANDMGARESIDESONTHEPOPULATIONSIZETHEPOPULATIONSIZEINMGAISBASEDONGOLDBERGSCONCEPTSUCHTHATEVOLUTIONPROCESSISPOSSIBLEWITHSMALLPOPULATIONSTOREDUCETHECOSTOFFITNESSFUNCTIONEVALUATIONGOLDBERG,1988THISIMPLIESTHATMGAEMPLOYSAFEWNUMBEROFPOPULATIONSFORGAEVOLUTIONREGARDLESSOFTHENUMBEROFDESIGNVARIABLESANDTHECOMPLEXITYOFDESIGNPARAMETERSKRISHNAKUMAR,1989DENNISANDDULIKRAVICH,2001THEPAPERDISCUSSESTHEDESIGNREQUIREMENTSOFFILLINGINJECTIONMOLDOPTIMIZATIONTOCONSTRUCTTHEPROPEROBJECTIVEFUNCTIONSANDDESIGNCONSTRAINTSFOURDIFFERENTDESIGNAPPLICATIONSININJECTIONMOLDSAREEXPLOREDTOEXAMINETHEPROPOSEDDESIGNSTRATEGIESTHEPAPERSHOWSTHEEFFECTIVENESSOFMGAINTHECONTEXTOFOPTIMIZATIONOFRUNNERSYSTEMININJECTIONMOLDINGDESIGN2MOLDFLOWANALYSISTHEFLOWOFAPOLYMERININJECTIONMOLDINGPROCESSOBEYSTHEFOLLOWINGGOVERNINGEQUATIONS220PPSSXXYYWWWWWWWW1222PXYTTTTCKTXYZUQQKJWWWWWWWW2WHERE,220HZSDZKINTHEABOVEEQUATIONS,PISAFLOWPRESSURE,TISATEMPERATUREOFPOLYMER,ANDTISDENOTEDASTIMEPARAMETERSK,J,ANDKAREVISCOSITY,SHEARRATEANDTHERMALCONDUCTIVITY,RESPECTIVELYLEE,2003ITISASSUMEDTHATPOLYMERISANONCOMPACTIONSUBSTANCEINTHEFILLINGANALYSISTHEFLOWANALYSISINTHEPRESENTSTUDYISCONDUCTEDBYCOMPUTERAIDEDPLASTICSAPPLICATIONCAPAKOO,2003,AFINITEELEMENTBASEDCOMMERCIALCODEFORPOLYMERFLOWOFINJECTIONMOLDINGTHERUNNERSYSTEMININJECTIONMOLDCOVERSTHEPASSAGEOFMOLTENPOLYMERFROMINJECTIONPORTTOGATESTHEPRESENTSTUDYDEVELOPSTWODIFFERENTRUNNERSYSTEMSWHEREACOLDSYSTEMREQUIRESTHECHANGEINPOLYMERTEMPERATURE,ANDAHOTSYSTEMKEEPITUNCHANGEDWHILETHEFLOWPASSESTHROUGHTHERUNNERFORTHEHOTRUNNERSYSTEMHASAGEOMETRICALLYCONSISTENTTHICKNESSDUETOTHECONSTANTTEMPERATUREASSHOWNINFIG1AHOWEVER,THECAERESULTOFACOLDRUNNERSYSTEMDEPENDSONTHETHICKNESSANDSHAPETABLE1TENBARTRUSSDESIGNRESULTSMICROGACONVENTIONALGACASE1CASE2CASE3CASE1CASE2CASE3REFERENCE20X1786815785815730781790X2041018019010083045010X3838799815820877837810X4505383389397327416390X5012096015110075055010X6041025025010082030010X7641567587584674630580X8523629552568506526551X9383385505507289386368OPTIMALAREAX10050025025040116042014OPTIMALWEIGHT1599158715881593159015851499OFFUNCTIONEVALUATIONS575405423025335788946949773533JONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007789798791AHOTRUNNERSYSTEMBCOLDRUNNERSYSTEMFIG1MODELINGOFRUNNERSYSTEMSHAPEOFARUNNERTHETYPICALILLUSTRATIONOFTHEGEOMETRICMODELINACOLDRUNNERSYSTEMISSHOWNINFIG1BWHERETHERUNNERTHICKNESSISCHANGEDACCORDINGTOTHETEMPERATUREGRADIENT3MOLDINGDESIGNREQUIREMENTS31OBJECTIVEFUNCTIONSONEOFTHEMOSTSIGNIFICANTFACTORSCONSIDEREDINTHEINJECTIONMOLDINGDESIGNISAFLOWPATTERN,WHICHIMPLIESTHATABALANCEDFLOWSHOULDBEMAINTAINEDWHILEAPOLYMERARRIVESATEACHPARTOFADESIGNPRODUCTONCETHEIMPROVEMENTONFLOWBALANCEISOBTAINED,THEFLOWOFMOLTENPOLYMERSMOOTHESANDTHEMAXIMUMINJECTIONPRESSUREISDECREASEDWITHTHESAMEORATLEASTEVENLYDISTRIBUTEDINJECTIONPRESSURELEVELATEACHGATEINACASEWHERETHECERTAINPARTOFAPRODUCTWITHINTHEMOLDISFILLEDUPEARLIERTHANOTHERPARTS,EACHPARTWOULDFALLINTOOVERPACKINGANDUNDERPACKINGSITUATIONSDURINGTHEFILLINGPROCESSOFAPOLYMERINTOMOLDSUCHPROBLEMFURTHEREVOKESAMALFORMATIONLIKETWISTINGANDBENDING,RESULTINGFROMTHEDIFFERENCEINCONTRACTIONRATEDURINGTHECOURSEOFCOOLINGOFFTHEDIFFERENCEINPRESSURETRIGGERSTHEFLOWOFPOLYMERDURINGTHEFILLINGPROCESS,INWHICHTHEMAXIMUMINJECTIONPRESSUREISDETECTEDATTHEINJECTIONPORTOFPOLYMERTHEPOLYMERALWAYSFLOWSFROMHIGHPRESSUREREGIONTOLOWPRESSUREONEWHENAFLOWPATTERNIMPROVES,THEFLOWOFPOLYMERGETSSMOOTHERWITHTHEMAXIMUMINJECTIONPRESSUREDECREASEDHOWEVER,THEFLOWINSTABILITYSOMETIMESHAPPENS,THEREBYREQUIRINGAHIGHERPRESSURETOFILLUPTHATIS,THEMAXIMUMINJECTIONPRESSURENEEDSTOBEREDUCEDINORDERTOIMPROVETHEFLOWINSTABILITYTHEPRESSUREGAPIE,THEHIGHESTANDLOWESTPRESSUREVALUESAMONGALLOFGATESISALSOTAKENASANOTHEROBJECTIVEFUNCTIONTODETERMINEWHETHERTHEWHOLEMOLDISBEINGFILLEDATONCEMOSTCOMMONLYACCEPTEDDESIGNSTRATEGYTOIMPROVETHEFLOWPATTERNISTHEADJUSTMENTOFGATELOCATIONTHEPRESENTSTUDYCONTROLSTHEFLOWPATTERNBYDEVELOPINGTHEOPTIMALGATEPOSITIONINGPROBLEMSWITHPROPEROBJECTIVEFUNCTIONSANDDESIGNCONSTRAINTSOBJECTIVEFUNCTIONSFORINJECTIONMOLDINGDESIGNARECONSIDEREDASBOTHMAXIMUMINJECTIONPRESSUREMIPANDMAXIMUMPRESSUREDIFFERENCEMPDITSHOULDBENOTEDTHATTHEMAXIMUMINJECTIONPRESSUREISCALCULATEDATTHEINJECTIONPORTANDTHEMAXIMUMPRESSUREDIFFERENCEISANUMERICALDIFFERENCEBETWEENTHEHIGHESTANDLOWESTVALUESOFPRESSUREAMONGALLOFGATESTHEAFOREMENTIONEDSTATEMENTSCOULDBEINTERPRETEDASAMULTIOBJECTIVEDESIGNPROBLEM,HENCETHEPRESENTSTUDYSIMPLYEMPLOYSAWEIGHTINGMETHODASFOLLOWSMIPXMPDXFXMIPMPDDE3WHERE,DANDEAREWEIGHTINGFACTORSASDE1,ANDXISASETOFDESIGNVARIABLESWHICHARECARTESIANCOORDINATESOFGATESONAPRODUCTEACHCOMPONENTINTHEABOVEEQUATIONISNORMALIZEDBYOPTIMALSINGLEOBJECTIVEFUNCTIONVALUE,IE,MIP,MPDITISMENTIONEDTHATTHENUMBEROFGATESISCONSIDEREDASAPROBLEMPARAMETERINTHESTUDY31CONSTRAINTSWELDLINESAREEASILYDETECTEDWHENMORETHANTWOFLOWFRONTSHAVINGDIFFERENTTEMPERATUREVALUESMEETDURINGTHEFILLINGPROCESSTHEWELDLINEISONEOFTHEWEAKESTPOINTSINMOLDEDPRODUCTITISVERY792JONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007740749VULNERABLETOASHOCKANDSUBSEQUENTLYCAUSESEXTERNALDEFECTSOFAVERYGLOSSYPOLYMERTHEWELDLINESHOULDBEMOVEDINTOALESSWEAKREGIONBYADJUSTINGTHEWIDTHOFAPRODUCT,THESIZEAND/ORSHAPEOFGATESANDRUNNERS,ANDTHEPOSITIONOFGATES,ETCTHEPRESENTSTUDYCONSIDERSTHEPOSITIONOFAWELDLINEASACONSTRAINTINOPTIMALGATEPOSITIONINGOFMOLDDESIGNONCEADESIGNERSPECIFIESAREASWHEREWELDLINESSHOULDNOTBEGENERATED,ALLOFTHEFINITEELEMENTNODESINSUCHAREASARECONSTRAINEDNOTTOFORMTHEWELDLINESSHEARSTRESSISDEFINEDASASHEARFORCEIMPOSEDONTHEWALLOFAMOLDBYTHESHEARFLOWOFAPOLYMERTHEMAGNITUDEOFSHEARSTRESSISPROPORTIONALTOTHEPRESSUREGRADIENTOFEACHPOSITIONINGENERAL,THESHEARSTRESSISZEROATTHECENTEROFAMOLDEDPRODUCT,ANDREACHESAMAXIMUMVALUEONTHEWALLHIGHSHEARSTRESSTRIGGERSTHEMOLECULECULTIVATIONONTHESURFACEOFAMOLDEDPRODUCTFLOWINSTABILITYSUCHASMELTFRACTUREHASACLOSERELATIONSHIPWITHTHESHEARSTRESSTHECLEARSURFACEOFAMOLDEDPRODUCTCANBEOBTAINEDBYREDUCINGTHEMAGNITUDEOFSHEARSTRESSTHATIS,SHEARSTRESSSHOULDBEMINIMIZEDDURINGTHEMOLDFILLINGPROCESSINORDERTOIMPROVETHEQUALITYOFAMOLDEDPRODUCT,PARTICULARLYONITSSURFACEMAXIMUMALLOWABLESHEARSTRESSDEPENDSONTHEKINDSOFPOLYMER,ANDISGENERALLYTAKENAS1OFTENSILESTRENGTHOFAPOLYMERSHEARSTRESSAFFECTINGTHEQUALITYOFENDPRODUCTISCONSIDEREDASANOTHERCONSTRAINT33FORMULATIONOFOPTIMIZATIONPROBLEMTHESTATEMENTOFAMOLDDESIGNOPTIMIZATIONPROBLEMCANBEWRITTENASFOLLOWSFIND12,NXIJKXIJKXIJKXIJK4TOMINIMIZEMIPXMPDXFXMIPMPDDE5SUBJECTTOSHEARSTRESSI,J,KSHEARSTRESSALLOWABLE6WELDLINEI,J,KDESIGNATEDAREASONLY7WHERE,LOWERUPPERXXXDDASETOFDESIGNVARIABLES,XARECARTESIANCOORDINATESI,J,KOFGATESONTHESURFACEOFAMOLDEDPRODUCT,WHERENISTHENUMBEROFGATESATRADITIONALWEIGHTEDSUMMETHODINTHECONTEXTOFMULTIOBJECTIVEOPTIMIZATIONISEMPLOYEDBYUSINGTWOWEIFIG2MICROGAPROCESSGHTINGFACTORSOFDANDE,WHEREDE1MULTIOBJECTIVEFUNCTIONSCONSIDEREDINTHEPRESENTSTUDYAREMAXIMUMINJECTIONPRESSUREMIPMEASUREDATTHEINJECTIONPORTANDMAXIMUMPRESSUREDIFFERENCEPDAMONGALLOFGATESTHECONSTANTS,MIPANDMPDAREOPTIMALOBJECTIVEFUNCTIONVALUESOBTAINEDVIASINGLEOBJECTIVEOPTIMIZATIONTHEPERMISSIONOFWELDLINESTODESIGNATEDAREASONLYANDTHEUPPERLIMITSONSHEARSTRESSAREIMPOSEDASDESIGNCONSTRAINTSTHEFLOWPATTERNANALYSISISPERFORMEDBYCAPAASMENTIONEDINTHEEARLIERSECTION,ANDTHEOPTIMIZATIONISCONDUCTEDTHROUGHMGAITSHOULDBENOTEDTHATCARTESIANCOORDINATESI,J,KISRECOGNIZEDASNODALPOINTSWHENAMOLDEDPRODUCTISDISCRETIZEDBYFINITEELEMENTSINCAPA4MICROGATHEOVERALLPROCESSOFMGAINTHEPRESENTSTUDYISDEPICTEDINFIG2,ANDASTEPWISEPROCEDURECANBEEXPLAINEDASFOLLOWSSTEP1GENERATEANINITIALPOPULATIONATRANDOMTHERECOMMENDEDPOPULATIONSIZEIS3,5,OR7STEP2PERFORMACONVENTIONALGAEVOLUTIONUNTILTHENOMINALCONVERGENCEISSATISFIEDINTHEPRESENTSTUDY,THEPOPULATIONSIZEISSELECTEDAS5,ANDATOURNAMENTSELECTIONOPERATORISUSEDTHECROSSOVERPROBABILITYINMGAIS10DUETOTHESMALLSIZEINPOPULATION,WHILEACONVENTIONALGAISPREFERREDTOUSEITLESSTHAN10THENOMINALCONVERGENCEMEANSTHATTHEDIFFERENCEOF1SAND/OR0SAMONGSTRINGPOSITIONSISWITHIN5OUTOFTHESTRINGLENGTH,THEREBYRESULTINGINTHECONVERGENCETOALOCALSOLUTIONSTEP3DURINGTHEUSERSPECIFIEDNUMBEROFGENERATIONS,ANEWPOPULATIONISUPDATEDONEINDIVIDUALISSELECTEDBYELITISMTHEREMAININGINDIVIDUALSINAJONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007789798793NEWPOPULATIONAREGENERATEDATRANDOMITSHOULDBENOTEDTHATTHESELECTIONOPERATIONADOPTSTOURNAMENTFORACTIVATINGTHEDIVERSITYANDELITISMFORKEEPINGTHEBESTSOLUTIONSINCETHEUPDATEDPOPULATIONSEXCEPTFORTHEELITISMAREGENERATEDATRANDOM,MGASELDOMCONSIDERSTHEMUTATIONBFAABIAACBAACEAACHAADAAAABAAAACAAAADAAAAEAAAAFAAAAGAAAAHAAAAIAAAAN_FUNCTIONOBJECTIVEAACONVENTIONALGABFAABIAACBAACEAACHAADAAAABAAAACAAAADAAAAEAAAAFAAAAGAAAAHAAAAIAAAAN_FUNCTIONOBJECTIVEBMICROGAFIG3CONVERGENCEHISTORIESOFTENBARTRUSSPROBLEMGFIG4SEVENDISCRETEDESIGNSPACESFORVEHICLEDASHBOARDPROBLEMFIG5INITIALGATELOCATIONOFVEHICLEDASHBOARDINSUMMARY,MGAENABLESTOLOCATEANOPTIMALSOLUTIONTHANKSTOTHESMALLSIZEOFPOPULATIONS,TOURNAMENTANDELITISMOPERATIONSINSELECTION,ANDTHEFULLPARTICIPATIONINCROSSOVERHOWEVER,MGAHASADRAWBACKUPONFINDINGONEOFMULTIPLELOCALOPTIMAONLYDUETOTHESMALLSIZEOFPOPULATIONSANDTHENOMINALCONVERGENCESTRATEGYACONVENTIONALGAISSUPERIORTOMAINTAININGTHEDIVERSITYWHILEMGAISADVANTAGEOUSOFSAVINGSINCOMPUTATIONALRESOURCEREQUIREMENTS41TRUSSDESIGNTHEPROPOSEDMGAISVERIFIEDBYATYPICALTENBARPLANARTRUSSOPTIMIZATIONPROBLEMTHEOBJECTIVEISTOFINDOPTIMALCROSSSECTIONALAREASBYMINIMIZINGTHESTRUCTURALWEIGHTSUBJECTEDTOSTRESSCONSTRAINTSHAFTKAANDGURDAL,1993OPTIMALSOLUTIONSAREOBTAINEDVIAMGAANDACONVENTIONALGATOCOMPAREWITHEACHOTHERTHEPOPULATIONSIZEINMGAIS5,WHILEACONVENTIONALGAREQUIRES250INDIVIDUALSINAPOPULATIONSINCETHESTRINGLENGTHINTHISPROBLEMIS100CROSSOVERANDMUTATIONPROBABILITIESINACONVENTIONALGAUSEDARE08AND001,RESPECTIVELYAFTERTWOGENETICSEARCHMETHODSARECONDUCTEDTENTIMESBYCHANGINGRANDOMLYGENERATEDINITIALPOPULATIONS,THEMOSTFITDESIGNRESULTSAREDEMONSTRATEDINTABLE1THECONVERGENCEHISTORYFOREACHOPTIMIZERDEMONSTRATESTHATMGAPRODUCESTHEBETTERDESIGNANDLOCATESTHENEAROPTIMALSOLUTIONATTHEEARLIERSTAGEOFEVOLUTIONINFIG35RESULTSOFDESIGNAPPLICATIONS51VEHICLEDASHBOARDAPASSENGERCARINPANELHASBEENFIRSTEXAMINEDTHISMODELISSUPPOSEDTOHAVE7GATES,ANDDESIGNSPACESFORUSEINGENETICEVOLUTIONARESHOWNINFIG4OBJECTIVEFUNCTIONSOFMIPANDMPDARETAKENINTOACCOUNT,BUTNOCONSTRAINTSAREIMPOSEDINTHISMODELTHEINITIALDESIGNISSHOWNINFIG5THISDESIGNHASBEENOBTAINEDTHROUGHEXPERIENCEANDTRIALANDERRORSINANAUTOMOTIVEPARTMOLDINGCOMPANYOPTIMIZEDRESULTSBYMGAARESHOWNINFIGS6TO8,WHOSEOBJECTIVEFUNCTIONSWERECONSIDEREDASMIPONLY,MPDONLYANDBOTHMIPANDMPD,RESPECTIVELYDESIGNRESULTSFOREACHCASEARESUMMARIZEDINTABLE2ASWELLITISNOTEDTHATBOTHMIPANDMPDISCALCULATEDWITHDCHANGINGFROM00TO10WITHANINCREMENTOF01WHILEKEEPINGDE0794JONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007740749FIG6OPTIMIZEDDESIGNOFVEHICLEDASHBOARDMIPONLYFIG7OPTIMIZEDDESIGNOFVEHICLEDASHBOARDMPDONLYFIG8OPTIMIZEDDESIGNOFVEHICLEDASHBOARDBOTHMIPANDMPDINCASEOFMIPONLYINFIG6,THEMAXIMUMINJECTIONPRESSUREVALUEHASANIMPROVEMENTOF239COMPAREDWITHANINITIALMODEL,BUTTHEPRESSUREDISTRIBUTIONONTHEPRODUCTBECOMESWORSE,RESULTINGINOVERPACKINGONTHELEFTREGIONWHENACASEOFMPDONLYISCONSIDERED,THEDESIGNPERFORMANCEINFIG7ISACHIEVEDINTERMSOFNOTONLYMAXIMUMPRESSUREDIFFERENCEBUTALSOMAXIMUMINJECTIONPRESSUREASSHOWNITISEXPECTEDTHATTHEFLOWGETSSMOOTHERDURINGTHEIMPROVEMENTOFPRESSUREDISTRIBUTION,ANDTHEMAXIMUMINJECTIONPRESSUREISDECREASEDASWELLINCASEOFBOTHMIPANDMPDINFIG8,ITSRESULTISQUITESIMILARTOACASETABLE2OPTIMIZATIONRESULTSOFVEHICLEDASHBOARDMAXIMUMPRESSUREMPAMAXIMUMDIFFERENCEMPAINITIALDESIGN242692026MIPONLY184733508MPDONLY231221244OBJECTIVEBOTHMIPANDMPD229921258TABLE3OPTIMIZATIONRESULTSOFTVMONITORMAXIMUMPRESSUREMPAMAXIMUMDIFFERENCEMPASHEARSTRESS05MPAINITIALDESIGN80551371045MIPONLY6846406043MPDONLY7227304045OBJECTIVEBOTHMIPANDMPD6846406043OFMPDONLYINTERMSOFGATELOCATIONSFROMFIGS7AND8ANDTHEPERCENTILEIMPROVEMENTINTABLE2AWEIGHTEDSUMMETHODISUSEDTOOBTAINTHEMULTIOBJECTIVEOPTIMALSOLUTIONSBYCHANGINGDANDESIMULTANEOUSLY,BUTYIELDSTHESAMERESULTSOUTOFATOTALOF11WEIGHTINGFACTORBASEDTRIALSTHEREASONWHYAFEWNUMBEROFPARETOSOLUTIONSAREDETECTEDISSUCHTHATTHEMAXIMUMPRESSUREISNOTCOUNTERTOPRESSUREDISTRIBUTIONINTHEFILLINGINJECTIONMOLDINGINOTHERWORDS,WHENTHEOVERALLPRESSUREDISTRIBUTIONISIMPROVEDTHANKSTOTHEENHANCEMENTOFFLOWBALANCEANDTHESMOOTHNESSOFPOLYMERFLOW,THEMAXIMUMPRESSUREISCONSEQUENTLYDECREASEDASFARASTHEPRESSUREDISTRIBUTIONOFAMODELEDPRODUCTISCONCERNED,THECHANGEINGATEPOSITIONISNOTICEABLEGATE_5OFOPTIMIZEDMODELSMOVESFROMRIGHTTOLEFTREGIONCOMPAREDWITHANINITIALMODEL52TVMONITORTHEMODELOFATVMONITOREQUIPPEDWITH4GATESISNOWOPTIMIZEDUSINGOBJECTIVEFUNCTIONSANDTHEUPPERLIMITONSHEARSTRESSCONSTRAINT,WHERETHESHEARSTRESSALLOWABLEIS05MPATHEINITIALDESIGNWITH4DISCRETEDESIGNSPACESISDISPLAYEDINFIG9,ANDOPTIMIZEDPRESSUREDISTRIBUTIONSARESHOWNINFIGS10AND11DESIGNRESULTSFORSINGLEOBJECTIVEANDMULTIOBJECTIVEOPTIMIZATIONARETABULATEDINTABLE3INCASEOFMIPONLYGENERATESTHESAMERESULTASWEIGHTINGMETHODBASEDMULTIOBJECTIVESOLUTIONSOFBOTHMIPANDMPDINCASEOFMPDONLY,THEMAXIJONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007789798795FIG9INITIALGATELOCATIONOFTVMONITORFIG10OPTIMIZEDDESIGNOFTVMONITORMPDONLYFIG11OPTIMIZEDDESIGNOFTVMONITORMIPONLYBOTHMIPANDMPDMUMINJECTIONPRESSUREANDMAXIMUMPRESSUREDIFFERENCEHAVEBEENIMPROVEDBY103AND778,RESPECTIVELYITISEXPECTEDTHATTHEENHANCEMENTONFLOWBALANCEANDSMOOTHNESSMAYBEMADEPOSSIBLEBYOPTIMIZINGTHEGATEPOSITIONS53CDTRAYTHECDTRAYUSEINALAPTOPCOMPUTERHAS4GATESFORINJECTIONMOLDINGTHEOPTIMIZATIONONTHISMODELFIG12CDTRAYLEFTANDITSINITIALGATELOCATIONRIGHTFIG13OPTIMIZEDDESIGNOFCDTRAYMIPONLYFIG14OPTIMIZEDDESIGNOFCDTRAYMPDONLYISCONDUCTEDWITHASHEARSTRESSCONSTRAINT,WHERETHEUPPERLIMITONSHEARSTRESSALLOWABLEIS15MPAINITIALANDOPTIMIZEDRESULTSFORPRESSUREDISTRIBUTIONARESHOWNINFIGS12TO15FROMTHESUMMARYOFTABLE4,THEDESIGNSOLUTIONSOFOPTIMALOBJECTIVEFUN796JONGSOOLEEANDJONGHUNKIM/JOURNALOFMECHANICALSCIENCEANDTECHNOLOGY212007740749FIG15OPTIMIZEDDESIGNOFCDTRAYBOTHMIPANDMPDTABLE4OPTIMIZATIONRESULTSOFCDTRAYMAXIMUMPRESSUREMPAMAXIMUMDIFFERENCEMPASHEARSTRESS15MPAINITIALDESIGN82661192122MIPONLY73917085126MPDONLY80440332112OBJECTIVEBOTHMIPANDMPD78790376114CTIONVALUESINTHISPROBLEMAREQUITESIMILARTOTHATINTHEVEHICLEDASHBOARDINCASEOFMIPONLY,THEMAXIMUMPRESSUREDIFFERENCEVALUEGETSWORSETH
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030中国直播电商主播培育体系货品供应链与流量转化效率研究
- 2025至2030中国智慧城市大数据平台建设现状与运营模式探索报告
- 2025-2030江西新能源装备行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030欧洲林业市场现在竞争格局分析投资评估规划研究报告
- 2026南京造币有限公司招聘2人备考题库及一套答案详解
- 2025四季度重庆五一职业技术学院合同工招聘24人备考题库及答案详解(夺冠系列)
- 2026北京工业大学聘用制人员招聘2人(第一批)及答案详解(易错题)
- 2026四川成都国际铁路港投资发展有限公司招聘2人备考题库及完整答案详解1套
- 2026四川成都市锦江区国有企业招聘18人备考题库有完整答案详解
- 2025华体(云南)体育产业发展有限公司见习岗位招募13人备考题库有答案详解
- 电力系统调频辅助服务市场交易实施细则
- 风电、光伏项目前期及建设手续办理流程汇编
- DB41T 1522-2018 可燃气体和有毒气体报警仪检查检测技术规范
- 内河船舶制造行业发展前景及投资风险预测分析报告
- QBT 1815-2002 指甲钳行业标准
- NeuViz 16 射线计算机断层摄影设备产品信息手
- 2021修订《城市规划设计计费指导意见》
- 吕梁职业技术学院单招《英语》考试复习题库(含答案)
- 叔叔在侄子订婚宴致辞
- 电子地图的基本构成与数据类型
- 2023上海物理水平等级考+答案
评论
0/150
提交评论