2018年电大高等数学基础期末考试试题及答案_第1页
2018年电大高等数学基础期末考试试题及答案_第2页
2018年电大高等数学基础期末考试试题及答案_第3页
2018年电大高等数学基础期末考试试题及答案_第4页
2018年电大高等数学基础期末考试试题及答案_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

12018 年电大高等数学基础期末考试试题及答案一、单项选择题1-1 下列各函数对中,( C )中的两个函数相等A. , B. ,2)(xfxg(2)(xfxg)(C. , D. ,3lnln1121-设函数 的定义域为 ,则函数 的图形关于(C )对称)(f),()(fA. 坐标原点 B. 轴 C. 轴 D. xyx设函数 的定义域为 ,则函数 的图形关于(D )对称x)(xfA. B. 轴 C. 轴 D. 坐标原点y.函数 的图形关于( A )对称2ex(A) 坐标原点 (B) 轴 (C) 轴 (D) yxy1-下列函数中为奇函数是( B )A. B. C. D. )1ln(2xyxycos2xa)1ln(x下列函数中为奇函数是(A )A. B. C. D. 3xe)1ln(yysi下列函数中为偶函数的是( D )A B C D xysin)1(xy2xcos)1ln(2x2-1 下列极限存计算不正确的是( D )A. B. 2limx 0)1ln(im0xC. D. 0sns2-2 当 时,变量( C )是无穷小量A. B. C. D. xix1x1in2)l(x当 时,变量( C )是无穷小量A B C D 0s1e2x.当 时,变量(D )是无穷小量A B C D xix)ln(下列变量中,是无穷小量的为( B )A B C D.1sin0xln101xe24x3-1 设 在点 x=1 处可导,则 ( D ))(f hffh)(2(lim0A. B. C. D. 1)11 )1(f设 在 可导,则 ( D ))(xf0xfxfh)(li00A B C D )2 )(20xf设 在 可导,则 ( D ))(f0 ffh)(li00A. B. C. D. )(xf)x 0f )(0f设 ,则 ( A ) A B. C. D. fe)(ff1(lim0 e2e143-2. 下列等式不成立的是(D )A. B C. D.xxd)(cossinxdxd2)(lnxd2下列等式中正确的是(B )A. B. xdxdarctn)1(22)1(xdC. D.l cotta4-1 函数 的单调增加区间是( D )4)(2xfA. B. C. D. ,),(),(),(函数 在区间 内满足(A )5y6A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升.函数 在区间(5,5)内满足( A )62xA 先单调下降再单调上升 B 单调下降 C 先单调上升再单调下降 D 单调上升. 函数 在区间 内满足(D )y),2(A. 先单调下降再单调上升 B. 单调下降 C. 先单调上升再单调下降 D. 单调上升5-1 若 的一个原函数是 ,则 (D ) A. B. C. D. )(xfx1f xln21x32.若 是 的一个原函数,则下列等式成立的是( A )。 FfA B )()(aFdxa )()(afbfdxbaC Df Ff5-2 若 ,则 ( B )cos)(xfd)(A. B. C. D. xincscxsincxos下列等式成立的是(D )A. B. )(d)(ff )(ffC. D. dx( B ) A. B. C. D. xfx)(d32 )(3f)(32xf)(1xf)(3xf( D ) A B C D 21d2-3 若 ,则 ( B )cxFf)()(xfd)(A. B. C. D. c2cF)2( cxF)(1补充: , 无穷积分收敛的是 xefxd)(ex)( d12函数 的图形关于 y 轴 对称。10二、填空题函数 的定义域是 (3,+) )ln(39)(2xxf函数 的定义域是 (2,3) (3,4 yln 函数 的定义域是 (5,2)xf1)()若函数 ,则 1 0,2xf )(f2 若函数 ,在 处连续,则 e ,)1()xkf k3.函数 在 处连续,则 2 02sin)(xkxf k函数 的间断点是 x=0 ,sin1y函数 的间断点是 x=3 。32x函数 的间断点是 x=0 ey13-曲线 在 处的切线斜率是 1/2 )(f)2,1(曲线 在 处的切线斜率是 1/4 x曲线 在(0,2)处的切线斜率是 1 f.曲线 在 处的切线斜率是 3 )(3),(3-2 曲线 在 处的切线方程是 y = 1 切线斜率是 0 xfsin曲线 y = sinx 在点 (0,0)处的切线方程为 y = x 切线斜率是 1 4.函数 的单调减少区间是 (,0 ) )1l(2函数 的单调增加区间是 (0,+) exf.函数 的单调减少区间是 (,1 ) 2.函数 的单调增加区间是 (0,+) )(f函数 的单调减少区间是 (0,+) 2xy5-1 . deex2 xdsin22sitan x +C )(tan若 ,则 9 sin 3x cf3si)(f5-2 3 0 0 35d)21(i 123dxedxx1)ln(下列积分计算正确的是( B )A B C D 0)(1xex )(1ex12|1三、计算题(一)、计算极限(1 小题,11 分)(1)利用极限的四则运算法则,主要是因式分解,消去零因子。(2)利用连续函数性质: 有定义,则极限)(0xf )(lim00xffx类型 1: 利用重要极限 , , 计算1sinlx ksnkxtanli1-1 求 解: x5sin6lm0 56sil5si6l00xx1-2 求 解: 0tali3x x3tanlm0 31tanli101-3 求 解: =i.3x类型 2: 因式分解并利用重要极限 , 化简计算。1)(slax1)sin(laa2-1 求 解: =)1sin(lm21xx sinl21x 2)(.il1 xx42-2 解: 21sinlmx 21)1(.)(sinlm1)sin(l12 xxx2-3 解: )3si(4x li3si)3si(43323x类型 3:因式分解并消去零因子,再计算极限3-1 解: =4586li24x 4586li24xx )1(2lixx 32li4x3-2 3m1x3335m17x3-3 解 4li2x 412lim)(2li4li2 xxxx其他: , 0sinlsin1l00 xxx 1sinlsinl00xx, 546lim2x 1li2x54362limx 32lix(0807 考题)计算 解: =xsin8tal0xsin8tal08.sital0x(0801 考题. )计算 解 x2li0 x2li021li0x(0707 考题.) = )1sin(3m1 4)3(1)sin(.l1 x(二) 求函数的导数和微分(1 小题,11 分)(1)利用导数的四则运算法则 vu( vu(2)利用导数基本公式和复合函数求导公式x)(ln 1)aaxe ueu.(xx2cs)(otanicssi xexex xxx sin).(cos)( cin2ocos isiin22 xxx eeeuos).(s)(sin.i 22 xxeeeusin).(sin)(co2i22类型 1: 加减法与乘法混合运算的求导,先加减求导,后乘法求导;括号求导最后计算 。1-1 xy)3(解: 322xee1322xxe132xe1-2 xylncot解: lncs)(lnl)(cs)()( 22221-3 设 ,求 eltay5解: xexxexeyxx 1sctan1)(tant)(ln)ta( 2类型 2: 加减法与复合函数混合运算的求导,先加减求导,后复合求导2-1 ,求 解:lsin2y co2)(l(si 222-2 ,求 ecoxy解: 222 cosesin).(co).(in)(si)( xxexx 2-3 ,求 , 解:x5lnyy 5455ll类型 3: 乘积与复合函数混合运算的求导,先乘积求导,后复合求导,求 。 解:eyxcos2 xexexex sinco2)(coss)( 222 其他: ,求 。y解: 2).(.)(coln)() xxxx 2ilnxx0807.设 ,求 解:2siney si2sin cosieey0801.设 ,求 解:2y 22)()(xx0707.设 ,求 解:sinx xxc.isin2sin 0701.设 ,求 解:xyecol xey e1.l(三)积分计算:(2 小题,共 22 分)凑微分类型 1: )1(d2xx计算 解:xcos2 cxd1sin)(coscos20707.计算 解: d1sin2 xo)(i1in20701 计算 解: xe2 de121xcx1e凑微分类型 2: d.计算 解: xcos cxdxxsin2cosdcos0807.计算 解:din oin2in0801.计算 解: xe cexdexex凑微分类型 3: , dln1 )ln(1a计算 解:xdln cxdux|lll.计算 解: e12e1e1 )n2()(2 25)ln2(11ex5 定积分计算题,分部积分法6类型 1: cxaxdaxaxdaxd aaa 12111 )(lnlnlnln计算 解: , e1 c2242l41)n(ln2lxd21 exxe 0)l(lne1 e计算 解: , e2dxa cxxdx 1ln)1(lnl2e2)ne1e1 计算 解: ,dxe1ln2a cxxdx 4ln2ll=de1n 421)(1 ee0807 e1lnxd 91)94l3( xl323232e2 ex0707 e1e2ndl n33类型 2 ceaxxax xa 21)(xdee21010 41042xx1)(1exxxdede210102 4130)4222exx(0801 考题) e(10x类型 3: caxadaxaxd sin1cocoscssin 2xx sin1in1ico20sinxd 02)sico(s20 x20co 1)in(i20 cxxdxx 2sin4co2cos1sdsin20 40)i1(220 2 200 011cossin|sincos|4xdxxdx 四、应用题(1 题,16 分)7类型 1: 圆柱体上底的中心到下底的边沿的距离为 l,问当底半径与高分别为多少时,圆柱体的体积最大?解:如图所示,圆柱体高 与底半径 满足 hr22rh圆柱体的体积公式为 V)(2求导并令 0)3(2l得 ,并由此解出 lr6即当底半径 ,高 时,圆柱体的体积最大lr36h类型 2:已知体积或容积,求表面积最小时的尺寸。2-1(0801 考题) 某制罐厂要生产一种体积为 V 的有盖圆柱形容器,问容器的底半径与高各为多少时用料最省?解:设容器的底半径为 ,高为 ,则其容积rh22.,.rhr表面积为 rS2, 由 得 ,此时 。24rV 0S32V34Vrh由实际问题可知,当底半径 与高 时可使用料最省。3r一体积为 V 的圆柱体,问底半径与高各为多少时表面积最小? 解: 本题的解法和结果与 2-1 完全相同。生产一种体积为 V 的无盖圆柱形容器,问容器的底半径与高各为多少时用料最省?解:设容器的底半径为 ,高为 ,则无盖圆柱形容器表面积为 ,令 , 得 rh rVrhS2202rVS,r,3由实际问题可知,当底半径 与高 时可使用料最省。3Vrrh2-2 欲做一个底为正方形,容积为 32 立方米的长方体开口容器,怎样做法用料最省?(0707 考题)解: 设底边的边长为 ,高为 ,用材料为 ,由已知 , ,xy322Vx2xh表面积 ,xVhy422令 ,得 , 此时 =2042xV63 ,4x2由实际问题可知, 是函数的极小值点,所以当 , 时用料最省。h欲做一个底为正方形,容积为 62.5 立方米的长方体开口容器,怎样做法用料最省?解: 本题的解法与 2-2 同,只需把 V=62.5 代入即可。类型 3 求 求曲线 上的点,使其到点 的距离最短kxy2 )0,(aA曲线 上的点到点 的距离平方为, kxayaxL22)()(, 0)(aLkx23-1 在抛物线 上求一点,使其与 轴上的点 的距离最短 42 ,3解:设所求点 P(x,y),则满足 ,点 P 到点 A 的距离之平方为y4)()3(22令 ,解得 是唯一驻点,易知 是函数的极小值点,0 1x1x当 时, 或 ,所以满足条件的有两个点(1,2)和(1,2)13-2 求曲线 上的点,使其到点 的距

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论