已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
High-Order Adaptive and ParallelDiscontinuous Galerkin Methodsfor Hyperbolic Conservation LawsJ. E. Flaherty, L. Krivodonova,J. F. Remacle, and M. S. ShephardScientific Computation Research CenterDiscontinuous Galerkin Method Arbitrary order: extends finite volume method Structured or unstructured meshes No need for inter-element continuity Simplifies adaptive h- and p-refinementDiscontinuous Galerkin Method Face-based communication Simplifies parallel computation Sharp capturing of discontinuities Element level conservation A posteriori error estimatesDiscontinuous Galerkin Method Face-based communication Simplifies parallel computation Sharp capturing of discontinuities Element level conservation A posteriori error estimatesHowever: More mesh unknowns than FEM for same order Possibly OK with parallel computation Monotonicty control (limiting) is difficultDG Formulationl Conservation lawl Construct a Galerkin problem on j cf. Cockburn and Shu (1989) DG SolutionlSolving the Galerkin problemIntegral evaluationTime integrationFlux evaluation, limitingApproximationHigher order equationsl Discontinuous approximations needs regularization for gradientsExampleApproximationl u Uj Pjp L2(j )Orthogonal basisTime IntegrationlExplicit Runge-KuttaTVB method of Cockburn and Shu (1989)Local time stepping, Remacle et al. (2002)xtFlux Evaluationl Approximate fn(Uj) by a numerical flux Fn(Uj,Unbj) Define Fn(Uj,Unbj) by a Riemann probleml Possibilities: Upwind: flux from inflow neighbor Lax-Friedrichs: |max| is the maximum absolute eigenvalue of fu Roe: linearized Riemann problem van Leer: flux vector splitting Colella-Woodward: contact surface resolutionLimitingl Limiting: suppress spurious oscillations when p 0 while maintaining orderSlope limiter: Cockburn and Shu (1989)Curvature limiter: Barth (1990)Moment limiter: Biswas et al. (1994)Filtering: Gottlieb et al. (1999)l No robust procedures for multi-dimensional situationsSlope vs. Moment LimitingSlope Limiting Moment LimitingKinematic wave equation: ut + ux = 0p = 2SuperconvergencelOne-dimensional conservation lawlSuperconvergence at Radau pointsAdjerid et al. (1995)Biswas et al. (1994)Superconvergencel Theorem: If p 0, the spatial discretization error of the DG method with Uj Pp on xj-1,xj satisfiesl Proof: Use Galerkin orthogonality, properties of Legendre polynomials, and “strong” superconvergence at downwind element ends cf. Adjerid et al. (2002)A Posteriori Error EstimationlOne-dimensional conservation lawlDG methodlError estimateSuperconvergence in plIf f(u) = au:l ut + aux = 0 p = 08 elementsSuperconvergence in plIf f(u) = au:l ut + aux = 0 p = 18 elementsSuperconvergence in plIf f(u) = au:l ut + aux = 0 p = 28 elementsSuperconvergence in plIf f(u) = au:l ut + aux = 0 p = 38 elementsSuperconvergence in plIf f(u) = au:l ut + aux = 0 p = 48 elementsSolitary Wavesl Nonlinear model:l Exact solution:Solution at t = 1 Effectivity indices at t = 1Two-Dimensional Problemsl Steady linear conservation lawl DG formulation U Pp is the DG solution j- is the inflow boundary of j j+ outflow boundary of jError EstimationlSubtract the exact solution and use the Divergence TheoremlAssume the error has a series expansion h is a mesh parameterError EstimationlUse an “induction” argument to showlOrthogonal basis (on canonical triangle)Error EstimationlShow that2D Radau polynomial?Krivodonova and Flaherty (2001)lStrong superconvergenceA Posteriori Error Estimationl Solve the exit flow and DG problem Complexity is O(p) per elementExamplelConsider = (0,1) x (0,1)Exact solutionError EstimatesN 16 56 160p |e|0 |e|0 |e|0 0 4.85e-2 1.0116 2.49e-4 1.0304 1.49e-2 1.04181 8.27e-4 1.0022 2.16e-4 1.0537 7.85e-5 1.02662 3.11e-5 0.9609 4.16e-6 0.9267 9.24e-7 0.90543 1.71e-6 1.0161 1.04e-7 1.0546 1.47e-8 1.00544 1.07e-7 1.0597 3.32e-9 1.0097 2.8e-10 0.9203SuperconvergenceN 8 32 128p I- I+ I- I
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美容院入股合伙协议书
- 2026届浙江省吴兴区七校联考物理八年级第一学期期末学业质量监测试题含解析
- 垄断协议书横向
- 律所之间合作协议书
- 全球协议书谈判
- 中美双边适航协议书
- 2025至2030全球及中国自旋转移转矩随机存取存储器行业发展趋势分析与未来投资战略咨询研究报告
- 2025至2030食品微生物行业市场深度调研及发展规划及有效策略与实施路径评估报告
- 抹账协议书税务
- 护理考试专用题库电子版及答案解析
- 2025年新修订治安管理处罚法课件
- 北斗系统运营管理办法
- 《校园安全指导》职业院校安全教育全套教学课件
- 固体废物与土壤环境监测知识试卷及答案解析
- 医学专业资格认证证明书(5篇)
- 客运公司经营科管理制度
- 用英语讲好中国故事课件
- 电网技术改造及检修工程定额和费用计算规定2020 年版答疑汇编2022
- T/CACE 071-2023铅酸蓄电池用再生铅及再生铅合金锭
- 《康复护理与盆底功能障碍》课件
- 智能化安全运营中心应用指
评论
0/150
提交评论