




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
High-Order Adaptive and ParallelDiscontinuous Galerkin Methodsfor Hyperbolic Conservation LawsJ. E. Flaherty, L. Krivodonova,J. F. Remacle, and M. S. ShephardScientific Computation Research CenterDiscontinuous Galerkin Method Arbitrary order: extends finite volume method Structured or unstructured meshes No need for inter-element continuity Simplifies adaptive h- and p-refinementDiscontinuous Galerkin Method Face-based communication Simplifies parallel computation Sharp capturing of discontinuities Element level conservation A posteriori error estimatesDiscontinuous Galerkin Method Face-based communication Simplifies parallel computation Sharp capturing of discontinuities Element level conservation A posteriori error estimatesHowever: More mesh unknowns than FEM for same order Possibly OK with parallel computation Monotonicty control (limiting) is difficultDG Formulationl Conservation lawl Construct a Galerkin problem on j cf. Cockburn and Shu (1989) DG SolutionlSolving the Galerkin problemIntegral evaluationTime integrationFlux evaluation, limitingApproximationHigher order equationsl Discontinuous approximations needs regularization for gradientsExampleApproximationl u Uj Pjp L2(j )Orthogonal basisTime IntegrationlExplicit Runge-KuttaTVB method of Cockburn and Shu (1989)Local time stepping, Remacle et al. (2002)xtFlux Evaluationl Approximate fn(Uj) by a numerical flux Fn(Uj,Unbj) Define Fn(Uj,Unbj) by a Riemann probleml Possibilities: Upwind: flux from inflow neighbor Lax-Friedrichs: |max| is the maximum absolute eigenvalue of fu Roe: linearized Riemann problem van Leer: flux vector splitting Colella-Woodward: contact surface resolutionLimitingl Limiting: suppress spurious oscillations when p 0 while maintaining orderSlope limiter: Cockburn and Shu (1989)Curvature limiter: Barth (1990)Moment limiter: Biswas et al. (1994)Filtering: Gottlieb et al. (1999)l No robust procedures for multi-dimensional situationsSlope vs. Moment LimitingSlope Limiting Moment LimitingKinematic wave equation: ut + ux = 0p = 2SuperconvergencelOne-dimensional conservation lawlSuperconvergence at Radau pointsAdjerid et al. (1995)Biswas et al. (1994)Superconvergencel Theorem: If p 0, the spatial discretization error of the DG method with Uj Pp on xj-1,xj satisfiesl Proof: Use Galerkin orthogonality, properties of Legendre polynomials, and “strong” superconvergence at downwind element ends cf. Adjerid et al. (2002)A Posteriori Error EstimationlOne-dimensional conservation lawlDG methodlError estimateSuperconvergence in plIf f(u) = au:l ut + aux = 0 p = 08 elementsSuperconvergence in plIf f(u) = au:l ut + aux = 0 p = 18 elementsSuperconvergence in plIf f(u) = au:l ut + aux = 0 p = 28 elementsSuperconvergence in plIf f(u) = au:l ut + aux = 0 p = 38 elementsSuperconvergence in plIf f(u) = au:l ut + aux = 0 p = 48 elementsSolitary Wavesl Nonlinear model:l Exact solution:Solution at t = 1 Effectivity indices at t = 1Two-Dimensional Problemsl Steady linear conservation lawl DG formulation U Pp is the DG solution j- is the inflow boundary of j j+ outflow boundary of jError EstimationlSubtract the exact solution and use the Divergence TheoremlAssume the error has a series expansion h is a mesh parameterError EstimationlUse an “induction” argument to showlOrthogonal basis (on canonical triangle)Error EstimationlShow that2D Radau polynomial?Krivodonova and Flaherty (2001)lStrong superconvergenceA Posteriori Error Estimationl Solve the exit flow and DG problem Complexity is O(p) per elementExamplelConsider = (0,1) x (0,1)Exact solutionError EstimatesN 16 56 160p |e|0 |e|0 |e|0 0 4.85e-2 1.0116 2.49e-4 1.0304 1.49e-2 1.04181 8.27e-4 1.0022 2.16e-4 1.0537 7.85e-5 1.02662 3.11e-5 0.9609 4.16e-6 0.9267 9.24e-7 0.90543 1.71e-6 1.0161 1.04e-7 1.0546 1.47e-8 1.00544 1.07e-7 1.0597 3.32e-9 1.0097 2.8e-10 0.9203SuperconvergenceN 8 32 128p I- I+ I- I
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青年育苗护林工程方案(3篇)
- 培训工程实施方案(3篇)
- 海上风电技术升级趋势及2025年市场规模预测报告
- 洞察2025:药品委托生产(CMO)商业模式变革与竞争格局分析报告
- 净化工程创优方案(3篇)
- 肺栓塞护理课件
- 2025年金融反欺诈技术演进趋势与大数据驱动应用报告
- 车床加工范围课件
- 数字资产管理师安全规范考核试卷及答案
- 高空作业机械操作工安全规范考核试卷及答案
- 《顺丰速运探索》课件
- 《动物繁殖技术》课件
- 中学生法制教育课件
- 智能语音病历录入行业跨境出海战略研究报告
- 县城小产权房屋买卖合同范本
- 门窗吊装免责协议书5篇
- 01-XRD-基础与原理(3-衍射原理)
- 《工程制图标准》课件
- 《竹木复合集装箱底板》(T-CSF 009-2019)
- 昆山市气象灾害应急预案
- 中国科学院大学毕业答辩课件模板
评论
0/150
提交评论