2018年七年级数学下期末模拟试卷二 1 无为县红庙初中含答案和解释_第1页
2018年七年级数学下期末模拟试卷二 1 无为县红庙初中含答案和解释_第2页
2018年七年级数学下期末模拟试卷二 1 无为县红庙初中含答案和解释_第3页
2018年七年级数学下期末模拟试卷二 1 无为县红庙初中含答案和解释_第4页
2018年七年级数学下期末模拟试卷二 1 无为县红庙初中含答案和解释_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018 年七年级数学下期末模拟试卷二 1 无为县红庙初中含答案和解释考试分值:150 分;考试时间:120 分钟学校:_姓名:_班级:_考号:_题号 一 二 三 四 五 六 七 八 总分得分 评卷人 得 分 一选择题(共 10 小题,满分 40 分,每小题 4 分)1 (4 分)、 , , ,3.1416,0. 中,无理数的个数是( )A1 个 B2 个 C3 个 D4 个2 (4 分)如果 (0x150)是一个整数,那么整数 x 可取得的值共有( )A3 个 B4 个 C5 个 D6 个3 (4 分)下列调查最适合于抽样调查的是( )A某校要对七年级学生的身高进行调查B卖早餐的师傅想了解一锅茶鸡蛋的咸度C班主任了解每位学生的家庭情况D了解九年级一班全体学生立定跳远的成绩4 (4 分)点 P(x1,x+1)不可能在( )A第一象限 B第二象限 C第三象限 D第四象限5 (4 分)对于实数 x,我们规定x表示不大于 x 的最大整数,如4=4, =1,2.5=3现对 82 进行如下操作:82 =9 =3 =1,这样对 82 只需进行 3 次操作后变为 1,类似地,对 121 只需进行多少次操作后变为 1( )A1 B2 C3 D46 (4 分)如图,ABBC,AE 平分BAD 交 BC 于点 E,AEDE,1+2=90,M,N 分别是 BA,CD 延长线上的点,EAM 和EDN 的平分线交于点 F下列结论:ABCD;AEB+ADC=180;DE 平分ADC;F 为定值其中结论正确的有( )A1 个 B2 个 C3 个 D4 个7 (4 分)不等式组 的解集在数轴上表示正确的是( )A B C D 8 (4 分)若 是方程组 的解,则(a+b)(ab)的值为( )A B C16 D169 (4 分)如图,ABCD,ABK 的角平分线 BE 的反向延长线和DCK 的角平分线 CF 的反向延长线交于点 H,KH=27,则K=( )A76 B78 C80 D8210 (4 分)一只跳蚤在第一象限及 x、y 轴上跳动,第一次它从原点跳到(0.1) ,然后按图中箭头所示方向跳动(0,0)(0,1)(1,1)(1,0),每次跳一个单位长度,则第 2018 次跳到点( )A (6,44) B (7,45) C (44,7) D (7,44)评卷人 得 分 二填空题(共 4 小题,满分 20 分,每小题 5 分)11 (5 分)若 xy= ,xy=5 1,则(x+1) (y1)= 12 (5 分)若单项式xm2y3 与 xny2m3n 的和仍是单项式,则 mn= 13 (5 分)如图所示,一个机器人从 O 点出发,向正东方向走 3m 到达 A1 点,再向正北方向走 6m 到达 A2 点,再向正西方向走 9m 到达 A3 点,再向正南方向走 12m 到达 A4 点,再向正东方向走 15m 到达 A5 点,按如此规律走下去,相对于点 O,机器人走到 A6 时是 位置14 (5 分)写出一个比2 小的有理数: 评卷人 得 分 三解答题(共 2 小题,满分 16 分,每小题 8 分)15 (8 分)阅读下列解方程组的方法,然后回答问题解方程组 解:由(1)(2)得 2x+2y=2 即 x+y=1(3)(3)16 得 16x+16y=16(4)(2)(4)得 x=1,从而可得 y=2方程组的解是 (1)请你仿上面的解法解方程组 (2)猜测关于 x、y 的方程组 的解是什么,并利用方程组的解加以验证 16 (8 分)为了能以“更新、更绿、更洁、更宁”的城市形象迎接 2011 年大运会的召开,深圳市全面实施市容市貌环境提升行动某工程队承担了一段长为 1500 米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化 1 米的道路需要 A 型花 2 枝和 B 型花 3 枝,成本是 22 元;乙方案是绿化 1 米的道路需要 A 型花 1 枝和 B 型花 5 枝,成本是 25 元现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的 2 倍(1)求 A 型花和 B 型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元? 四解答题(共 2 小题,满分 16 分,每小题 8 分)17 (8 分)已知 2a1 的平方根是3,3ab+2 的算术平方根是 4,求 a+3b 的立方根18 (8 分)已知直线 ABCD(1)如图 1,直接写出BME、E、END 的数量关系为 ;(2)如图 2,BME 与CNE 的角平分线所在的直线相交于点 P,试探究P 与E 之间的数量关系,并证明你的结论;(3)如图 3,ABM= MBE,CDN= NDE,直线 MB、ND 交于点 F,则 = 五解答题(共 2 小题,满分 20 分,每小题 10 分)19 (10 分)如图,把ABC 向上平移 3 个单位长度,再向右平移 2 个单位长度,得到ABC(1)在图中画出ABC,并写出点 A、B、C的坐标;(2)在 y 轴上求点 P,使得BCP 与ABC 面积相等20 (10 分)某工厂接受了 20 天内生产 1200 台 GH 型电子产品的总任务已知每台 GH 型产品由 4 个 G 型装置和 3 个 H 型装置配套组成工厂现有 80 名工人,每个工人每天能加工6 个 G 型装置或 3 个 H 型装置工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的 G、H 型装置数量正好全部配套组成 GH 型产品(1)按照这样的生产方式,工厂每天能配套组成多少套 GH 型电子产品?请列出二元一次方程组解答此问题(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工 4 个 G 型装置1设原来每天安排 x 名工人生产 G 型装置,后来补充 m 名新工人,求 x 的值(用含 m 的代数式表示)2请问至少需要补充多少名新工人才能在规定期内完成总任务?六解答题(共 1 小题,满分 12 分,每小题 12 分)21 (12 分)2017 年 3 月 27 日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整致,满分为100 分) 进行统计,绘制了图中两幅不完整的统计图 (1)a= ,n= ;(2)补全频数直方图;(3)该校共有 2000 名学生若成绩在 70 分以下(含 70 分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?七解答题(共 1 小题,满分 12 分,每小题 12 分)22 (12 分)已知:如图,CDG=B,ADBC 于点 D,EFBC 于点 F,试判断1 与2的关系,并说明理由八解答题(共 1 小题,满分 14 分,每小题 14 分)23 (14 分)在平面直角坐标系中,一次函数 y=ax+b 的图象过点 B(1, ) ,与 x 轴交于点 A(4,0) ,与 y 轴交于点 C,与直线 y=kx 交于点 P,且 PO=PA,(1)求 a+b 的值(2)求 k 的值(3)D 为 PC 上一点,DFx 轴于点 F,交 OP 于点 E,若 DE=2EF,求 D 点坐标安徽省无为县红庙初中 2017-2018 学年度下学期期末模拟试卷二参考答案与试题解析一选择题(共 10 小题,满分 40 分,每小题 4 分)1【分析】由于无理数就是无限不循环小数初中范围内学习的无理数有:,2 等;开方开不尽的数;以及 0.1010010001,等有这样规律的数由此即可判定选择项【解答】解:在 、 , , ,3.1416,0. 中,无理数是:, 共 2 个故选:B【点评】此题主要考查了无理数的定义注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数本题中 是有理数中的整数2【分析】如果 (0x150)是一个整数,则它一定是一个数的平方的形式把 150 分解因数得 5,5,2,3,凑质数的平方即可解决问题【解答】解: = ,而 (0x150)是一个整数,且 x 为整数,5523x 一定可以写成平方的形式,所以可以是 6,24,54,96 共有 4 个故选:B【点评】本题主要考查了算术平方根的性质,解题关键是把 150 分解因数得 5,5,2,3,凑质数的平方即可3【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似【解答】解:A、某校要对七年级学生的身高进行调查,调查范围小,适合抽样普查,故 A错误;B、卖早餐的师傅想了解一锅茶鸡蛋的咸度无法进行普查,适合抽样调查,故 B 正确;C、班主任了解每位学生的家庭情况,适合普查,故 B 错误;D、了解九年级一班全体学生立定跳远的成绩适合普查,故 D 错误;故选:B【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有坏的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查4【分析】根据题意列出不等式组,求出不等式组的解即可【解答】解:本题可以转化为不等式组的问题,看下列不等式组哪个无解,(1) ,解得 x1,故 x10,x+10,点在第一象限;(2) ,解得 x1,故 x10,x+10,点在第三象限;(3) ,无解;(4) ,解得1x1,故 x10,x+10,点在第二象限故选:D【点评】本题主要考查平面直角坐标系中各象限内点的坐标的符号,把符号问题转化为不等式组的问题,该知识点是中考的常考点5【分析】x表示不大于 x 的最大整数,依据题目中提供的操作进行计算即可【解答】解:121 =11 =3 =1,对 121 只需进行 3 次操作后变为 1,故选:C【点评】本题考查了估算无理数的大小,解决本题的关键是明确x表示不大于 x 的最大整数6【分析】先根据 ABBC,AE 平分BAD 交 BC 于点 E,AEDE,1+2=90,EAM 和EDN 的平分线交于点 F,由三角形内角和定理以及平行线的性质即可得出结论【解答】解:ABBC,AEDE,1+AEB=90,DEC+AEB=90,1=DEC,又1+2=90,DEC+2=90,C=90,B+C=180,ABCD,故正确;ADN=BAD,ADC+ADN=180,BAD+ADC=180,又AEBBAD,AEB+ADC180,故错误;4+3=90,2+1=90,而3=1,2=4,ED 平分ADC,故正确;1+2=90,EAM+EDN=36090=270EAM 和EDN 的平分线交于点 F,EAF+EDF= 270=135AEDE,3+4=90,FAD+FDA=13590=45,F=180(FAD+FDA)=18045=135,故正确故选:C【点评】本题主要考查了平行线的性质与判定、三角形内角和定理、直角三角形的性质及角平分线的性质,熟知三角形的内角和等于 180是解答此题的关键7【分析】先求出不等式组的解集,再在数轴上表示出来即可【解答】解: 解不等式得:x2,解不等式得:x1,不等式组的解集为1x2,在数轴上表示为: ,故选:A【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解此题的关键8【分析】考查二元一次方程组的求解【解答】解:把 x=2,y=1 代入原方程组,得 ,解得 (a+b) (ab)=16故选:C【点评】注意掌握二元一次方程组的加减消元法和代入消元法两种解法,解方程组的基本思想是消元此题亦可直接运用加减法求得 a+b 和 ab 的值,代入求解9【分析】分别过 K、H 作 AB 的平行线 MN 和 RS,根据平行线的性质和角平分线的性质可用ABK 和DCK 分别表示出H 和K,从而可找到H 和K 的关系,结合条件可求得K【解答】解:如图,分别过 K、H 作 AB 的平行线 MN 和 RS,ABCD,ABCDRSMN,RHB=ABE= ABK,SHC=DCF= DCK,NKB+ABK=MKC+DCK=180,BHC=180RHBSHC=180 (ABK+DCK) ,BKC=180NKBMKC=180(180ABK)(180DCK)=ABK+DCK180,BKC=3602BHC180=1802BHC,又BKCBHC=27,BHC=BKC27,BKC=1802(BKC27) ,BKC=78,故选:B【点评】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,ab,bcac10【分析】根据跳蚤运动的速度确定:(0,1)用的秒数分别是 1(12)秒,到(0,2)用8(24)秒,到(0,3)用 9(32)秒,到(0,4)用 24(46)秒,到(0,5)用25(52)秒,到(0,6)用 48(68)秒,依此类推,到(0,45)用 2025 秒,后退 7 秒可得 2018 秒所对应的坐标【解答】解:跳蚤运动的速度是每秒运动一个单位长度, (0,1)用的秒数分别是 1(12)秒,到(0,2)用 8(24)秒,到(0,3)用 9(32)秒,到(0,4)用 24(46)秒,到(0,5)用 25(52)秒,到(0,6)用 48(68)秒,依此类推,到(0,45)用 2025秒202516=2018,故第 2018 秒时跳蚤所在位置的坐标是(6,44) 故选:A【点评】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间二填空题(共 4 小题,满分 20 分,每小题 5 分)11【分析】先把所求的代数式化为和已知相关的形式,再把已知条件代入计算即可【解答】解:原式=xyx+y1=xy(xy)1,xy= ,xy=5 1,原式= 5 +11=6 故答案为:6 【点评】此题主要考查了实数的运算,解答此题的关键是把已知 xy= ,xy=5 1 当做一个整体,代入代数式求值12【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,可得出 m 和 n 的值,然后求得 mn 的值【解答】解:单项式xm2y3 与 xny2m3n 的和仍是单项式,m2=n,2m3n=3,解得:m=3,n=1,mn=31= ;故答案为: 【点评】本题考查同类项的知识,比较简单,注意掌握同类项的定义13【分析】由题意可知:OA1=3;A1A2=32;A2A3=33;可得规律:An1An=3n,根据规律可得到 A5A6=36=18,进而求得 A6 的横纵坐标【解答】解:根据题意可知当机器人走到 A6 点时,A5A6=18 米,点 A6 的坐标是(6+3=9,186=12) ,即(9,12) 【点评】本题主要考查了点的坐标的意义横坐标的绝对值是点到 y 轴的距离,纵坐标的绝对值是点到 x 轴的距离解题关键是根据题意求出各条线段的长度14【分析】根据负数的大小比较,绝对值大的反而小,只要绝对值大于 2 的负数都可以【解答】解:比2 小的有理数为3(答案不唯一) ,故答案为:3【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大或者两个负数比较大小绝对值大的反而小是解答此题的关键三解答题(共 2 小题,满分 16 分,每小题 8 分)15【分析】观察例题中方程组的特点找出规律,利用此规律解方程【解答】解:(1),得 2x+2y=2,即 x+y=1,2005,得 2005x+2005y=2005,得 x=1,从而得 y=2方程组的解是 (2) 验证把方程组的解代入原方程组,得 ,即 方程组成立【点评】本题属开放性题目,需要同学们提高观察力,探索题目中的规律从而求得其解题方法16【分析】 (1)本题需根据题意设 A 型花和 B 型花每枝的成本分别是 x 元和 y 元,根据题意列出方程组,即可求出 A 型花和 B 型花每枝的成本(2)本题需先根据题意设按甲方案绿化的道路总长度为 a 米,根据题意列出不等式,解出结果;再求出工程的总成本即可得出答案【解答】解:(1)设 A 型花和 B 型花每枝的成本分别是 x 元和 y 元,根据题意得:解得: 所以 A 型花和 B 型花每枝的成本分别是 5 元和 4 元(2)设按甲方案绿化的道路总长度为 a 米,根据题意得:1500a2aa500则所需工程的总成本是52a+43a+5(1500a)+45(1500a)=10a+12a+75005a+3000020a=375003a当按甲方案绿化的道路总长度为 500 米时,所需工程的总成本最少w=375003500=36000(元)当按甲方案绿化的道路总长度为 500 米时,所需工程的总成本最少,总成本最少是36000 元【点评】本题主要考查了一元一次不等式的应用,在解题时要注意根据题目中的数量关系列出不等式是解题的关键四解答题(共 2 小题,满分 16 分,每小题 8 分)17【分析】根据题意可以求得 a、b 的值,从而可以求得 a+3b 的立方根【解答】解:2a1 的平方根是32a1=9,解得,a=5,3ab+2 的算术平方根是 4,a=5,3ab+2=16,15b+2=16,解得,b=1,a+3b=8,a+3b 的立方根是 2【点评】本题考查立方根、平方根、算术平方根,解答本题的关键是明确它们各自的计算方法18【分析】 (1)由 ABCD,即可得到END=EFB,再根据EFB 是MEF 的外角,即可得出E=EFBBME=ENDBME;(2)由平行线的性质以及三角形外角性质,即可得到NPM=NGB+PMA=CNP+PMA,再根据三角形内角和定理,即可得到E+2PMA+2CNP=180,即E+2(PMA+CNP)=180,即可得到E+2NPM=180;(3)延长 AB 交 DE 于 G,延长 CD 交 BF 于 H,由平行线的性质以及三角形外角性质,即可得到E=ABEAGE=ABECDE;依据CHB 是DFH 的外角,即可得到F=CHBFDH= ABE CDE= (ABECDE) ,进而得出F= E【解答】解:(1)如图 1,ABCD,END=EFB,EFB 是MEF 的外角,E=EFBBME=ENDBME,故答案为:E=ENDBME;(2)如图 2,ABCD,CNP=NGB,NPM 是GPM 的外角,NPM=NGB+PMA=CNP+PMA,MQ 平分BME,PN 平分CNE,CNE=2CNP,FME=2BMQ=2PMA,ABCD,MFE=CNE=2CNP,EFM 中,E+FME+MFE=180,E+2PMA+2CNP=180,即E+2(PMA+CNP)=180,E+2NPM=180;(3)如图 3,延长 AB 交 DE 于 G,延长 CD 交 BF 于 H,ABCD,CDG=AGE,ABE 是BEG 的外角,E=ABEAGE=ABECDE,ABM= MBE,CDN= NDE,ABM= ABE=CHB,CDN= CDE=FDH,CHB 是DFH 的外角,F=CHBFDH= ABE CDE= (ABECDE) ,由代入,可得F= E,即 故答案为: 【点评】本题主要考查了平行线的性质和角平分线的定义、三角形内角和的运用,解决问题的关键是作辅助线构造同位角以及内错角,依据平行线的性质及三角形外角性质进行推导计算五解答题(共 2 小题,满分 20 分,每小题 10 分)19【分析】 (1)根据图形平移的性质画出ABC,并写出点 A、B、C的坐标即可(2)求出ABC 中 BC 边上的高,进而可得出结论【解答】解:(1)如图,ABC即为所求A(0,4)B(1,1) ,C(3,1) ;(2)如图,P(0,1)或(0,5) ) 【点评】本题考查的是作图平移变换,熟知图形平移不变性的性质是解答此题的关键20【分析】 (1)设 x 人加工 G 型装置,y 人加工 H 型装置,利用每个工人每天能加工 6 个 G型装置或 3 个 H 型装置得出等式求出答案;(2)利用每天加工的 G、H 型装置数量正好全部配套组成 GH 型产品得出等式表示出 x 的值,进而利用不等式解法得出答案【解答】 (1)解:设 x 人加工 G 型装置,y 人加工 H 型装置,由题意可得:解得: ,6324=48(套) ,答:按照这样的生产方式,工厂每天能配套组成 48 套 GH 型电子产品(2) 由题意可知:3(6x+4m)=3(80x)4,解得: 4=240(个) ,6x+4m240 6 +4m240解得:m30答:至少需要补充 30 名新工人才能在规定期内完成总任务【点评】此题主要考查了一元一次方程的应用以及一元一次不等式的应用,根据题意正确得出等量关系是解题关键六解答题(共 1 小题,满分 12 分,每小题 12 分)21【分析】 (1)由 A 组人数及其百分比求得总人数,再用总人数乘以 C 组百分比可得 a 的值,先求得 E 组的百分比,用 360乘以 E 组百分比可得 n 的值;(2)总人数乘以 B 组的百分比可得其人数,据此补全图形可得;(3)总人数乘以样本中 A、B 百分比之和【解答】解:(1)本次调查的总人数为 3010%=300(人) ,a=30025%=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论