第四章线性规划问题在工商管理中的应用_第1页
第四章线性规划问题在工商管理中的应用_第2页
第四章线性规划问题在工商管理中的应用_第3页
第四章线性规划问题在工商管理中的应用_第4页
第四章线性规划问题在工商管理中的应用_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章线性规划问题的应用 用最少的劳动力来满足工作的需要。一、人力资源分配的问题 例: 某昼夜服务的公交线路每天各时间段内所需司机和乘务人员数如下:设司机和乘务人员分别在各时间段一开始时上班,并连续工作 8h, 问该公交线路怎样安排司机和乘务人员,既能满足工作需要,又配备最少司机和乘务人员 ? 解:设 xi 表示第 i班次时开始上班的司机和乘务人员数 ,这样我们建立如下的数学模型。 目标函数: Min x1 + x2 + x3 + x4 + x5 + x6 约束条件: s.t. x1 + x6 60 x1 + x2 70 x2 + x3 60 x3 + x4 50 x4 + x5 20 x5 + x6 30 x1,x2,x3,x4,x5,x6 0二、生产计划问题 合理利用人力、物力、财力等有限资源,使获利最大。vnv2v1产值pmbmamnam2am1mp2p1资源单价b2b1资源数量a2na1nn2a22a212a12a1111 产品资源生产计划数据表生产计划例题 例:明兴公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。 甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。 数据如下页表。 问:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?解: 设 x1 ,x2 ,x3 分别为三道工序都由本公司加工的甲、乙、丙三种产品的件数, x4, x5 分别为由外协铸造再由本公司机加工和装配的甲、乙两种产品的件数。 求 xi 的利润:利润 =售价各成本之和 可得到 xi( i=1,2,3,4,5) 的利润分别为 15、10、 7、 13、 9元。 这样我们建立如下数学模型: 目标函数: Max 15x1+10x2+7x3+13x4+9x5 约束条件: s.t. 5x1+10x2+7x3 8000 6x1+4x2+8x3+6x4+4x5 12000 3x1+2x2+2x3+3x4+2x5 10000 x1,x2,x3,x4,x5 0 例:永久机械厂生产 、 、 三种产品,均要经过 A、 B 两道工序加工。假设有两种规格的设备 A1、 A2能完成 A 工序;有三种规格的设备 B1、 B2 、 B3能完成 B 工序。 可在 A、 B的任何规格的设备上加工; 可在任意规格的 A设备上加工,但对 B工序 ,只能在 B1设备上加工; 只能在 A2与 B2设备上加工;数据如下页表。 问:为使该厂获得最大利润,应如何制定产品加工方案 ?解:设 xijk 表示第 i 种产品,在第 j 种工序上的第 k 种设备上加工的数量。利润 = (销售单价原料单价) 产品件数 之和 (每台时的设备费用 设备实际使用的总台时数 )之和。 建立数学模型 : Max 0.75x111+0.7753x112+1.15x211+1.3611x212+1.9148x312-0.375x121-0.5x221-0.4475x122-1.2304x322-0.35x123 s.t 5x111+10x2116000 ( 设备 A1 ) 7x112+9x212+12x31210000( 设备 A2 ) 6x121+ 8x221 4000 ( 设备 B1 ) 4x122+11x3227000 ( 设备 B2 ) 7x123 4000 ( 设备 B3 )x111+ x112- x121- x122- x123 = 0 ( 产品在 A、 B工序加工的数量相等)x211+ x212- x221 = 0 ( 产品在 A、 B工序加工的数量相等)x312 - x322 = 0( 产品在 A、 B工序加工的数量相等)xijk0, i=1,2,3; j=1,2; k=1,2,3三、套裁下料问题 如何下料使用材最少。bmamnam2am1Amb2b1需求量a2na1nn2a22a21A2a12a11A11 下料方式零件毛坯数据表例 :某工厂要做 100套钢架,每套用长为 2.9 m, 2.1m, 1.5m的圆钢各一根。已知原料每根长 7.4 m, 问:应如何下料,可使所用原料最省?解 :考虑下列各种下料方案(按一种逻辑顺序给出)把各种下料方案按剩余料头从小到大顺序列出 假设 x1,x2,x3,x4,x5 分别为上面前 5 种方案下料的原材料根数。我们建立如下的数学模型。 目标函数: Min x1 + x2 + x3 + x4 + x5 约束条件: s.t. x1 + 2x2 + x4 100 2x3 + 2x4 + x5 100 3x1 + x2 + 2x3+ 3x5 100 x1,x2,x3,x4,x5 0 在原料供应量的限制下如何获取最大利润。四、配料问题cnc2c1单价bmamnam2am1Bmb2b1成分数量a2na1nAnA2a22a21B2a12a11B1A1 原料成分数据表 例:某工厂要用三种原料 1、 2、 3混合调配出三种的产品甲、乙、丙,数据如下表。问:该厂应如何安排生产,使利润收入为最大? 解:设 xij 表示第 i 种(甲、乙、丙) 产品中原料 j 的含量。这样我们建立数学模型时,要考虑: 对于甲: x11, x12, x13; 对于乙: x21, x22, x23; 对于丙: x31, x32, x33; 对于原料 1: x11, x21, x31; 对于原料 2: x12, x22, x32; 对于原料 3: x13, x23, x33;目标函数: 利润最大,利润 = 收入原料支出 约束条件: 规格要求 4 个;供应量限制 3 个。Maxz = -15x11+25x12+15x13-30x21+10x22-40x31-10x33 s.t. 0.5 x11-0.5 x12 -0.5 x13 0 ( 原材料 1不少于 50% ) -0.25x11+0.75x12 -0.25x13 0 ( 原材料 2不超过 25% ) 0.75x21-0.25x22 -0.25x23 0 ( 原材料 1不少于 25% ) -0.5 x21+0.5 x22 -0.5 x23 0 ( 原材料 2不超过 50% ) x11+x21+x31 100 (供应量限制) x12+x22+x32 100 (供应量限制) x13+x23+x33 60 (供应量限制) xij0 ,i = 1,2,3; j = 1,2,3五、投资问题 从投资项目中选取方案,使投资回报最大。 例:某部门现有资金 200万元,今后五年内考虑给以下的项目投资。已知: 项目 A :从第一年到第五年每年年初都可投资,当年末能收回本利 110% ; 项目 B:从第一年到第四年每年年初都可投资,次年末能收回本利 125% ,但规定每年最大投资额不能超过 30万元; 项目 C:需在第三年年初投资,第五年末能收回本利 140% ,但规定最大投资额不能超过 80万元; 项目 D:需在第二年年初投资,第五年末能收回本利 155% ,但规定最大投资额不能超过 100万元。 问: a)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大? b)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在 330万元的基础上使得其投资总的风险系数为最小?据测定每万元每次投资的风险指数如下表: 解: 1)确定决策变量:连续投资问题 设 xij ( i = 15 , j = 1、 2、 3、 4)表示第 i 年初投资于 A(j=1)、 B(j=2)、 C(j=3)、 D(j=4)项目的金额。这样我们建立如下决策变量: A x11 x21 x31 x41 x51 B x12 x22 x32 x42 C x33 D x242)约束条件:第一年: A当年末可收回投资,故每年初都应把全部资金投出去,于是:x11+ x12 = 200第二年: B次年末才可收回投资故第二年年初的资金为1.1x11, 于是: x21 + x22+ x24 = 1.1x11第三年:年初的资金为 1.1x21+1.25x12, 于是 : x31 + x32+ x33 = 1.1x21+ 1.25x12第四年:年初的资金为 1.1x31+1.25x22, 于是: x41 + x42 = 1.1x31+ 1.25x22第五年:年初的资金为 1.1x41+1.25x32, 于是: x51 = 1.1x41+ 1.25x32B、 C、 D的投资限制: xi2 30 ( i=1, 2, 3, 4 ), x33 80, x24 100a)Max z=1.1x51+1.25x42+1.4x33+1.55x24s.t. x11+ x12 = 200x21 + x22+ x24 = 1.1x11x31 + x32+ x33 = 1.1x21+ 1.25x12x41 + x42 = 1.1x31+ 1.25x22x51 = 1.1x41+ 1.25x32xi2 30 ( i =1、 2、 3、 4 ), x33 80, x24 100 xij0(i=1,2,3,4,5; j=1,2,3,4)3) 目标函数及模型:b) Min f = ( x11+x21+x31+x41+x51)+ 3(x12+x22+x32+x42)+4x33+5.5x24 s.t. x11+ x12 200x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论