一个具有可调变权能力的变权向量_第1页
一个具有可调变权能力的变权向量_第2页
一个具有可调变权能力的变权向量_第3页
一个具有可调变权能力的变权向量_第4页
一个具有可调变权能力的变权向量_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

27 1 Vol. 27 No. 1e %Control and Decision2012 M1Jan. 2012B VM ? M _ cI|: 1001-0920 (2012) 01-0082-05o1;2, 1(1.0 S/v 710071 2. B “ B725000)K1:G M _ l/B M _ ,i M _ M _ 1“ ;YVM _ M Q, p /M _ M,is M rT.KM _ pB , TV ,M _ (1959), 3, q,p V 3 =,VYK .1 o:B VM ? M _ 83(W1)BB:mXj=1wj(x) = 1;(W2) : wj(x1;x2; ;xm)1 1M (j = 1;2; ;m).5w(x)xM _ ,eM _ .MM8 maxx20;1m mXj=1xjwj(x):TM _ w(x) :(W3): wj(x1;x2; ;xm)11M xjh(j = 1;2; ;m),5w(x)M _ .TM _ w(x) :(W30) : wj(x1;x2; ;xm)11M xj9(j = 1;2; ;m),5w(x) M _ .lll2 !sj : 0;1m!0;1(j = 1;2; ;m),Ts(x) = (s1(x);s2(x); ;sm(x) :(S1) ix = (x1;x2; ;xm) 2 0;1m, xi xj,5si(x) 6 sj(x);(S2) sj(x1;x2; ;xm)1 1M (j= 1;2; ;m);(S3) _ w = (w1;w2; ;wm),w(x) l1(W1), (W2)(W3), Ow(x) = (w1s1(x); ;wmsm(x)mXj=1(wjsj(x): (1)5s(x) M _ , T(1)ws(x)BBHadamard.T|(S1) /Hq:(S10)x20;1m, xixj,5si(x)sj(x);O|(S3)(W3)(W30),5Ms(x) M _ .M _ “S %“8 H, I n “SM1( “S ),7 O I n “SF ( M _ ), D2 UM 8 .BM _, i M _ , PM _ X _ BBHadamard?/ s 5. 1 !w = (w1;w2; ;wm) _ Owj 0(j = 1;2; ;m);x 2 0;1m;w(x) = (w1(x);w2(x); ;wm(x).1) Tw(x)M _ ,5i M _ s(x) Pw(x) = (w1s1(x); ;wmsm(x)mXj=1(wjsj(x) 1Hq : x = (x1;x2; ;xm) 2 0;1m, xi xj,5wi(x)wi6 wj(x)wj;2) Tw(x) M _ ,5i M _ s(x) Pw(x) = (w1s1(x); ;wmsm(x)mXj=1(wjsj(x) 1Hq : x = (x1;x2; ;xm) 2 0;1m, xi 6 xj,5wi(x)wi6 wj(x)wj. 1) s. !w(x)M _ ,5 x 2 0;1mwj(x) 0 OmXj=1wj(x)= 1.ywj 0,# |sj(x) = wj(x).wjmXi=1wi(x)wi; (2)s(x) = (s1(x);s2(x); ;sm(x)./ s(x) M _ . n5,wj 0;wj(x) 0, T(2)0 6 sj(x) 6 1. Q,ywj(x)1 1M ,#sj(x)1 1M ,s(x)(S2).9 , zw(x) = (w1s1(x); ;wmsm(x)mXj=1(wjsj(x);yNs(x) (S3).7x 2 0;1m,xi xjH,ywi(x)=wi 6 wj(x)=wj,#si(x)sj(x) = wi(x)wi wj(x)wj6 0;s(x)9 (S1).yN l2 V, s(x) M _ .A1.D10 1 V.2) 1).21 “S %5, I n “SA1,V7 “S d ,yN1Hqwj 0(j = 1;2; ;m) . M _ B M ,M _ M Q.lll3 !x 2 0;1m;w _ Owj 0(j = 1;2; ;m), w(x)M _ ,vj(w(x) = wj(x)wjwjM _ w(x)x)1wjM,84 e %27 v(w(x) =vuut mXj=1(vj(w(x)2w(x)x)9M.Mvj(w(x)V UM wj(x) wjMM .A vj(w(x) H,M 9v xj ;vj(w(x) H,M hl xj .9MV UM _ w(x) _ ws MM 8.Ms M _ M 1T,Y, %V Y5BM K,“ Vh /M _ i,7 O/M _ 9 %M 1 p.3 MMM _ “ -/M _ BZE 5/ M_ , _ B 3M _ . YL ,G M X,vM _ l V/M _ 14. _ w =(w1;w2; ;wm),/_ w(x) = (w1(x);w2(x); ;wm(x), wj(x) = (1+fi(xxj)wj: (3): j = 1;2; ;m;x 2 0;1m; x =mXj=1(xjwj);fi 1minx20;1mmin16j6m(xjx)6fi61maxx20;1mmax16j6m(xjx):(4) 2 T(3)w(x) V M _ V UM _ .fi 0 H, w(x) M_ ;fi 0 HA wj(x) =(1+fi(xxj)wj 0;xxj 1+ xxjmaxx20;1mmax16j6m(xj x)wj 1+ xxjxj xwj = 0:ymXj=1wj(x) =mXj=1(1+fi(xxj)wj =mXj=1wj +fixmXj=1wjmXj=1xjwj= 1;#w(x) l1BB.ywj(x)=xj= fi(wj 1) 0,5w(x)M _ ;fi =0 H,A w(x) = w _ . ,1w(x) fiT a |,L ? M _ , L= vZL.9 ,T(3)M _ w(x)xjMvj(w(x) = fi(xxj),9Mv(w(x) = jfijvuut mXj=1(xxj)2; xF Zjfij.A fix s,=M _ M (Y. n5, 4 Ax (MY? p:x ( H(x1 = x2 = = xm),9Mv(w(x) = 0,N HM _ Mx s ,w(x) = w;x ( H, v(w(x)|v,N HM _ M 9 v,M X. Q,%x 20;1m,1XM vM _ w(x),1 | Pjfij v fi.Y |fi = 1minx20;1mmin16j6m(xj x)H, w(x) KvM M _ ;|fi = 1maxx20;1mmax16j6m(xj x)H, w(x) KvMM _ .4 L L L sss |D8 5 T(3)M _ M rT.1 o:B VM ? M _ 85 5 v / ,(w1), S(w2)(w3) 3 “ST S,A, B, C, D, E 5F ,V1V2sY I “S % .V1 “S “S S0.36 0.31 0.33V2 % SA 0.214 0.166 0.184B 0.206 0.220 0.182C 0.195 0.192 0.220D 0.181 0.195 0.185E 0.175 0.193 0.201 8ZE p, “f M0(x) =3Xj=1(xjwj)9 ,sYM0(A) =0:1892, M0(B) = 0:2024, M0(C) = 0:2023, M0(D) =0:1867, M0(E) = 0:1892.M B C A E D.D8 XM 8ZE B C A E D./ T(3)M _ p5,N HM “f M(x) =3Xj=1(xjwj(x): (6) % , T(4) 70:621 6 fi 640:355. |fi = 1, T(3)9 ,V3 M .V3M SA 0.351 0.317 0.332B 0.359 0.304 0.337C 0.363 0.313 0.324D 0.362 0.307 0.331E 0.365 0.309 0.326V4M SA 0.271 0.382 0.347B 0.347 0.256 0.397C 0.386 0.342 0.272D 0.380 0.284 0.336E 0.411 0.298 0.291 T(6)9 sYM(A) = 0:1888, M(B) = 0:2022, M(C) = 0:2022,M(D) = 0:1866, M(E) = 0:1890.M C B E A D. 8ZEM1, TC M, M 8ZE I n (. T XM 8ZE TM .YV9 ,M _ 9Mv(w(A) = 0:0344, v(w(B) = 0:0272, v(w(C) =0:0217, v(w(D) = 0:0102, v(w(E) = 0:0189.A M A I “S MKv, A 5 K (.V91 ,M _ A w1MKv,2:5%.T |fi = 10,5 T(3)9 V4 M . T(6)9 M(A)= 0:1852, M(B) = 0:2000, M(C) = 0:2008, M(D) =0:1863, M(E) = 0:1879.M C B E D A. 8 M1, C vM, N HM _ I n (. HM _ 9Mv(w(A) = 0:344, v(w(B) = 0:272, v(w(C) = 0:217,v(w(D) = 0:102, v(w(E) = 0:189.M _ Aw1M9Kv,25%.A , |, %T,“ %T8C % (1 p, L= f ,9F .5 PM 8ZE p “S %5 H,B1o / % ( z1 pM _ .NVM X, l/ B M _ ,i M _ V M _ _ V U, H9 M.YV s L V ,1M _ |, MrT.yNM _ B MaM M _ , ? % ( z1 p, L= vZL. ID(References)1 . “ “ M.: =Sv, 1985: 47-59.(Wang P Z. Shadow of fuzzy sets and random setsM.Beijing: Beijing Normal University Press, 1985: 47-59.)2 .y bW MV U O()J.“d , 1995, 9(3): 1-9.(Li H X. Factor spaces and mathematical frame ofknowledge representation()J. Fuzzy Systems andMathematics, 1995, 9(3): 1-9.)3 .y bW MV U O()J.“d , 1996, 10(2): 12-19.(Li H X. Factor spaces and mathematical frame of86 e %27 knowledge representation()J. Fuzzy Systems andMathematics, 1996, 10(2): 12-19.)4 .y bW MV U O()J.“d , 1996, 10(4): 110-118.(Li H X. Factor spaces and mathematical frame ofknowledge representation()J. Fuzzy Systems andMathematics, 1996, 10(4): 110-118.)5 , . M 8“ (f /J.“d Ll, 1999, 19(7): 116-118.(Zhu Y Z, Li H X. Axiomatic system of state variableweights and construction of balance functionsJ. SystemsEngineeringTheory and Practice, 1999, 19(7): 116-118.)6 b, . M _ /J. =Sv, 2002, 38(4): 455-461.(Li D Q, Li H X. The properties and construction of statevariable weight vectorsJ. J of Bejing Normal University,2002, 38(4): 455-461.)7 b,! , .1 M _ l TJ.“d Ll, 2004, 24(5):97-102.(Li D Q, Gu Y D, Li H X. Results on axiomatic definitionof state variable weight vectorJ. Systems EngineeringTheory and Practice, 2004, 24(5): 97-102.)8f , b.M % M _ XEJ. Ll M, 2009, 39(6): 93-97.(Zhang L Y, Li D Q. An ideal point approach of weightsvector in determining state variable decision makingJ.Mathematics in Practice and Theory, 2009, 39(6): 93-97.)9 b, .M rTs M _ J. e %, 2004, 19(11): 1241-1245.(Li D Q, Li H X. Analysis of variable weights effect andselection of appropriate state variable weights vector indecision makingJ. Control and Decision, 2004, 19(11):1241-1245.)10 b,yf C. M _ M rTJ.“d Ll, 2009, 29(6): 127-131.(Li D Q, Hao F L. Weights transferring effect fo statevariable weights vectorJ. Systems EngineeringTheoryand Practice, 2009, 29(6): 127-131.)11 b,a , .QM y %J.“d, 2004, 19(3): 258-263.(Li D Q, Cui H M, Li H X. Multifactor decision makingbased on hierarchical variable weightsJ. J of SystemsEngineering, 2004, 19(3): 258-263.)12 W . T4Qsy %J.“d Ll, 2006, 26(3): 25-32.(Nie M L. Hierarchy variable weight decision-making inthe selection of supply chains cooperatorsJ. SystemsEngineeringTheory and Practice, 2006, 26(3): 25-32.)13 =z, ,I,.M QsEJ.“d Ll, 2010, 30(4): 724-731.(Li C H, Sun Y H, Jia Y H, et al. Analytic hierarchy processbased on variable weightsJ. Systems EngineeringTheoryand Practice, 2010, 30(4): 724-731.)145.BM _ # J. Ll M, 2008, 38(20): 134-138.(Xu Z Z. The construction and application of a new variableweight vectorJ. Mathematics in Practice and Theory,2008,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论