电子电气资料_电子电气资料汇编3.doc_第1页
电子电气资料_电子电气资料汇编3.doc_第2页
电子电气资料_电子电气资料汇编3.doc_第3页
电子电气资料_电子电气资料汇编3.doc_第4页
电子电气资料_电子电气资料汇编3.doc_第5页
免费预览已结束,剩余21页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目录电力电容器运行中的应注意的问题1双绕组变压器差动保护中电流互感器的接线3变压器突发短路故障的缺陷分析7变压器渗漏油对策8浅谈现场变压器换油处理工艺12变压器铁芯多点接地故障的分析判断1310kv电压互感器单相接地与谐振的区别16并联电容器过电压保护二次接线的改进18干式变压器的工程选型及应用20对危险环境临时用电安全管理的探讨22户内真空断路器使用探讨24电力电容器运行中的应注意的问题斑竹整理 电力电容器在电力系统中主要作无功补偿或移相使用,大量装设在各级变配电所里,这些电容器和正常运行对保障系统的供电质量与效益起重要作用,下面就电力电容器在运行中应注意的问题及相应的处理方法介绍如下1、环境温度 电容器周围环境的温度不可太高,也不可太低。如果环境温度太高,电容工作时所产生的热就散不出去;而如果环境温度太低,电容器有关技术条件规定,电容器的工作环境温度一般以40为上限。我国大部分地区的气温都在这个温度以下,所以通常不必采用志汴降温设施。如果电容器附近存在着某种热源,有可能使室温上升到40以上,这时就应采取通风降温措施,否则应立即切除电容器。电容器环境温度和下限应根据电容器中介质的种类和性质来决定。yy型电容器中的介质是矿物油,即使是在-45以下,也不会冻结,所以规定-45为其环境温度的下限。而yl型电容器中的介质就比较容易冻结,所以环境温度必须高于-20,我国北方地区不宜在冬季使用这种电容器。(除非把它安置在室内,并采取加温措施)2、工作温度 电容器工作时,其内部介质的温度应低于65,最高不得超过70,否则会引起热击穿,或是引起鼓肚现象。电容器外壳的温度是在介质温度与环境温度之间,一般为5060,不得超过60。为了监视电容器的温度,可用桐油石灰温度计的探头粘贴在电容器外壳大面中间的三分之二高度外,或是使用熔点为5060的试温蜡片。3、工作电压 电容器对电压十分敏感,因电容器的损耗与电压平方成正比,过电压会使电容器发热严重,电容器绝缘会加速老化,寿命缩短,甚至电击穿。电网电压一般应低于电容器本身的额定电压,最高不得超过其额定电压10%,但应注意:最高工作电压和最高工作温度不可同时出现。因此,当工作电压为1:1倍额定电压时,必须采取降温措施。4、工作电流与谐波问题 当电容器安装工作于含有磁饱和稳压器、大型整流器和电弧炉等“谐波源”的电网上时,交流电中就会出现高次谐波。对于n次谐波而言,电容器的电抗将是基皮的1/n,因此,谐波的这种电流对电容器非常有害,极容易使电容器击穿引起相间短路。考虑谐波的存在,故规定电容器的工作电流不得超过额定电流的1.3倍。必要时,应在电容器上串联适当的感性电抗菌素,以限制谐波电流。5、合闸时的弧光问题 某些电容器组特别是高压电容器在合闸并网时,因合闸涌流很大,在开关上或变流器上会出现弧光。碰到这种情况时,应调整电容器组的电容值或更换变流器,对高压电容器可采用串电抗菌素器加以消除。6、运行中的放声问题 电容器在运行时,一般是没有声音的但有时会例外。造成声音的原因大致有以下几种:(1)套管放电。电容器的寺管为装配式者,若露天放置时间过长,雨水进入两层套管之间,加上电压后,就有可能产生劈劈啪啪的放电声。遇到这种情形时,可将外套管松出,擦干重新装好即可。(2)缺油放电。电容器内如果严重缺油,以致于使套管的下端露出油面,这时就有可能发出放电声。为此,应添加同种规格的电容器油。(3)脱焊放电。电容器内部若有虚焊或脱焊,则会在油内闪络放电。如果放电声不止,则应拆开修理。(4)接地不良放电,电容器的芯子与外壳接触不良,会出现浮动电压,引起放电声。这时,只要将电容器摇动一下,使芯子与外壳接触,便可使放电声消失。7、爆炸问题 多组电容器并联运行时,只要其中有一台发生了击穿,其余各台就会同时通过这一台放电。放电能量很大,脉冲功率很高,使电容器油迅速汽化,引起爆炸,甚至起火,严重时有可能使建筑物也遭到破坏。为防止这种事故,可在每台电容器上串联适当的电抗器或熔丝,然后并联使用。另外,电力系统中并联补偿的电容器采用结线虽有较多优点,但电容器采用结线时,任一电容器击穿短路时,将造成三相线路的两相短路,短路电流很大,有可能引起电容器爆炸。这对高压电容器特别危险。因此高压电容器组宜接成中性点不接地星形(y型),容量较小时(450kvar及以下)宜接成。低压电容器组应接成。双绕组变压器差动保护中电流互感器的接线黑龙江省红兴隆电业局袁范雄 摘要各类教科书在讲述变压器差动保护原理时,绘制的接线图各不相同,还有的并不标示电流互感器的极性。当运用这些原理来指导实际接线时,常常因概念上的混淆而发生接线错误。本文从应用的角度,在分析接线原理的基础上对双线圈变压器差动保护中电流互感器的j1种接线方法进行了概括总结; 关键词 差电流接线 相位补偿 极性1、电流互感器的基本接线形式 2组电流互感器的二次绕组可接成和电流与差电流2种接线形式。差电流接线的特点是一组电流互感器二次绕组反极性与另一组相接,即所谓循环电流法接线。差动保护就是将变压器两侧的电流互感器二次绕组按差电流的方法接线,再将其输出电流接入差动继电器所构成的一种变压器保护。它的保护范围为变压器两侧电流互感器之间的部分。在实际使用中,变压器差动保护的单线图往往有如图1的接线形式。 在变压器正常运行及保护范围外发生短路时,变压器两侧流入差动继电器的电流相量互差180,其相量和为零。在保护范围内发生短路,当流入差动继电器的电流相量大于继电器动作值时继电器将动作,使变压器两侧的开关跳闸。2变压器y,dll接线所带来的问题 为减少三次谐波的影响,变压器线组别多采用y,d11接线。如此即形成变压器两侧电流之间有30。的相位差,使得在正常情况下有不平衡电流流入差动继电器。为了消除这种影响,可将变压器两侧的电流互感器二次绕组按一定方式接线,用来校正这种相位差。校正相位差的接线方法是:变压器y侧的电流互感器二次绕组铵形接线,而变压器侧的电流互感器二次绕组按y形接线。因形接线和y形接线可采用不同的连接方法,因此可能由于电流互感器接线错误而不能形成正确的相位补偿,导致差动保护发生误动作。3差动保护的2种接线方法 通常电流互感器为减极性的,即电流互感器一、二次绕组对应端于极性相同。在设备安装时,一般将变压器两侧电流互感器的正极性端皆靠近各自的母线安装。此时,差动保护可有如下2种接线方法。 方法一:“引头”法。形接线的电流互感器二次绕组采用a头b尾,b头c尾,c头a尾连接,同时以头为引出线;y形接线的电流互感器二次绕组采用连尾引头的接线方法。其接线图见图2(a),向量关系见图2(b)。由于变压器的接线组别为y、d11、其侧电流iab超前y侧电流认为30。采用了相位补偿接线,使变压器侧电流互感器二次电流iab滞后变压器y侧电流互感器二次电流iab为30。,正好补偿了这一相位差。差电流接线使iab:、与iab之间还有180。的相位差。因此由图2(c)可以看出,采用差电流接线和相位补偿接线后,使iab总共滞后iab210。这样,差动保护两侧电流的相位完全满足要求。方法二:“引尾”法。形接线的电流互感器二次绕组采用a头c尾,c头b尾,b头a尾连接,同时以尾为引出线y形接线的电流互感器二次绕组采用连头引尾的接线方法。其接线图见图3(a),向量关系见固3(b),变压器两侧电流互感器一二次电流的相位关系见图3(c)。4当正极性端靠近变压器时安装 如果变压器两侧电流互感器的正极性端皆靠近变压器安装,即变压器两侧电流互感器全部为反极性、我们仍可用上述的2种接线方法来接线。画法形式相同,仅仅电流互感器的极性相反而已。因此我们不妨也可以这样理解:电流互感器极性正负的标示是相对的,如果我们把电流互感器的负极性端当成“头”而正极性端当成“尾”来接线,接线方法完全一样。5电流互感器非规范安装如果在实际工作中变压器两侧的电流互感器并未按照前述规律安装(正极性端皆靠近母线或皆靠近变压器),而是一侧电流互感器正极性端靠近本侧母线,而另一侧电流互感器正极性端靠近变压器。这时,电流互感器二次绕组的接线就不能采用前述从变压器两侧同时“引头”或同时“引尾”的接线方法、 而应接成:变压器一侧采用“引头”接线而另一侧采用“引尾”接线。一般应以一侧电流互感器的极性为准来决定另一侧的接线。在图4中,变压器两侧电流互感器极性非规范安装、当变压器y侧电流互感器二次绕组采用a头b尾,b头c尾,c头a尾连接并以头为引出线时,变压器侧电流互感器二次绕组采用连头引尾的接线。从相量分析看出,这样接线是正确的。6电流互感器可以不标示极性 由前面的分析看出,变压器两侧电流互感器的正极性无论怎样放置,都可获得正确的接线。电流互感器不标示极性,意思是其正极性的具体位置无关紧要。但是,变压器两侧电流互感器之间一二次电流的关系是相对固定的。在双绕组变压器差动保护的电流互感器接线时。只要能掌握差电流和相位补偿的接线原理,保证变压器两侧流入差动继电器电流的相位关系,并灵活运用前面讲到的差动保护的2种接线方法,那么,无论对电流互感器的极性如何标示或根本不标示,在实际工作中都不致发生接线错误。 电工技术2001年第8期 变压器突发短路故障的缺陷分析 张会平摘要通过实例介绍了一套系统的、可操作的现场分析判断突发短路故障的方法,对电力系统运行有较大实用价值。 关键词变压器突发短路故障 0引言 近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kv及以上电压等级变压器多年运行维护经验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。 1分析项目 1.1变压器油中溶解气体色谱分析 用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kv原#1变压器突发事故后,无载分接开关处放电,但直阻试验反映不出来,只有色谱分析才能发现。1.2绝缘电阻试验变压器各绕组、铁心、夹铁、外壳相互之间的绝缘电阻是否正常,是常用的简易检查项目。如老君堂变电站220kv原#1变压器事故掉闸后首先进行绝缘电阻试验,很快发现三侧绕组和铁心对地的绝缘电阻几乎为0,马上就判断为纵绝缘击穿且铁心烧损,与吊罩检查结果相符;又如下面述及的110kv林河变电站#2变压器,也是借助绝缘电阻试验确定了缺陷位置。1.3绕组直阻试验直阻试验检查导电回路中分接开关接触是否良好、引线接头焊接或接触是否良好、绕组是否断股、匝间有无短路等缺陷,可配合多种试验共同确定缺陷,被1997年的部颁预试规程确定为变压器最重要的电气试验项目。由于电网短路容量越来越大,短路事故在直阻方面的反映往往很明显。如北土城变电站110kv原#2变压器事故后,通过绕组变形试验发现低压绕组异常,但绝缘电阻正常,色谱分析结果表明发生了涉及绝缘部位的放电,最后依靠低压三相直阻不平衡的试验结果分析出:低压绕组明显变形且绕组严重受损,须进行大修。大修时发现几乎所有的绕组都已经扭曲变形,内部结构严重损坏。1.4绕组变形试验它是通过各线圈在高频下的响应特性来判断其结构和周围状况是否发生明显变化的新型试验项目。如220kv怀柔变电站#1变压器1997年3月发生套管爆炸事故,由于不知线圈内部状况,不能决定是否更换线圈,后根据绕组变形试验结果正常的结论确定不再更换线圈。在大短路容量的电网中近年变压器发生出口短路事故比率较高(例如华北电网1998年的4起变压器事故中3起源于短路冲击),而绕组变形是其中常见的严重缺陷,所以该项目是现场决定变压器是否投运的主要依据,有其它试验项目不可替代的作用。220kv老君堂变电站原#2变压器短路事故后所有电气和色谱试验均正常,但绕组变形试验表明绕组已经变形并在大修时被确认。该项试验在北京供电局已经开展4年,共进行229台次,其中事故后试验46台次,发现缺陷10起,没有一起判断错误的情况。近3年来,共进行了40余次事故抢修,依照上述“四项分析”分析无一误判。可见,这套分析方法比较适于现场,但必须强调:“四项分析”要综合起来使用,方能得出正确的结论。 2应用实例 例1:1998-10-1,110kv林河变电站一台10kv开关速断保护动作掉闸,重合失败,7s后#2变压器(sfz40000/110,1996-11投运)本体轻、重瓦斯,闸箱重瓦斯,差动保护均动作,变压器高、低压侧开关掉闸,退出运行。油色谱分析表明:总烃含量急剧增加,co、co2增加较少,结论为变压器内部存在突发性的裸金属部位的放电。电气试验分析表明:绕组直流电阻试验正常;绕组变形试验发现低压绕组略有疑点;绝缘电阻试验发现低压绕组对高压绕组、铁心及地的绝缘仅有25m。进行分解试验以查找缺陷位置:高压绕组对低压绕组、铁心以及地绝缘电阻正常;铁心对高、低压绕组及地绝缘电阻正常。判断结果是:低压绕组非线圈部位对地部位的绝缘有问题。综合分析:变压器内部发生突发性的裸金属部位放电,但绕组变形、直流电阻试验又未发现明显缺陷,故线圈本身有缺陷的可能性很小;低压绕组有微弱的变形,对地绝缘只有25m,故低压绕组接近变压器箱体的部位(尤其是出线处即低压绕组对地部位)因短路冲击而放电的可能性最大;低压绕组出线处的手孔可以打开,故可方便地在现场检查。变压器内部检查发现:低压内部引线铜排的多个木夹板中,有两处没有包扎铜排的辅助绝缘,其中低压引线上部木夹件处铜排有相间短路放电痕迹,木夹件表面烧黑,引发相邻部位铜排相间发生油间隙电弧放电。变压器内部散落放电后的铜渣少许,油中炭素较多,线圈上部垫块多处松动。证明试验对于故障部位的判断基本正确,该变压器现场处理后投入运行。例2:1996-10-28,吕村#2变压器(sfpsz9120000/220,1992年投运)110kv侧b相套管爆炸,套管芯子向上窜起30cm,套管整体上移10cm,根部严重喷油,故障录波器、差动保护、轻重瓦斯、防爆筒均动作。试验分析:拔掉高压、中压侧所有套管后,做电气试验结果正常。鉴于套管爆炸从未发生过,上级单位决定该变压器返厂大修。但变压器运输要经过一座高速公路桥,工期不允许。最后,根据试验人员的建议,先进行绕组变形试验,结果正常,之后进行局部放电试验,结果正常。投运后运行正常。 作者单位:北京供电局修试处(北京100075)变压器渗漏油对策上海电力变压器修造厂 变压器渗漏油问题长期以来一直困扰着供电运行部门,不仅影响达标创一流工作,而且影响安全运行。 根据对上海的市东、市区、市南三个供电局的十三个供电所变压器渗漏油情况的专题调研,我们分析了造成变压器渗漏油的诸多原因,制订和完善了防变压器渗漏油的各项工艺措施、技术措施,并联系实际慎密进行了施工处理。现简介如下。1攻关措施(1)选用新型密封材料,完善对密封件的检测手段国内变压器行业最常用的密封材料为丁睛橡胶,但由于其配方和工艺等原因,国产丁睛橡胶目前尚不能满足性能要求,再加上运行中漏磁场分布不均匀导致变压器温度分布不均匀,局部区域温度可能超过丁睛橡胶正常使用的极限温度,造成丁睛橡胶提前老化、龟裂和失去弹性。我们经过调研,选用了耐高温、耐油性好的高分子材料。它能在150c热油中连续工作,有着良好的耐臭氧、抗紫外线、耐有机溶剂及耐老化等特点。我们认为对橡胶件的检验不能只停留在测量其几何尺寸及表观质量上,为此我厂添置了必要的橡胶检测设备,目前已做到了对每批进货的橡胶检查其物理特性,并对其做在125y热油中浸泡164h的老化试验及与变压器油的相溶性试验,测量其重量、体积和硬度的变化率。(2)改进密封件的断面形状 在变压器箱沿转弯处,角度小,以往采用圆形橡胶条,由于长期受应力极易产生龟裂,导致渗漏。现我厂采用“8”字形断面胶条,不仅避免了龟裂现象,而且双密封结构,使密封更为合理可靠。 同时,对放气塞、油样阀等部位改用为o型密封圈。(3)改进密封橡胶粘合剂以往使用502胶水粘合剂粘接,粘合度低、时间长、遇水易溶解,且粘合层显脆性,为密封部位最薄弱的环节。根据调研,现已改用406胶水粘合剂,其粘度不仅也短,遇水不易溶解,而且粘合层为柔性,不易断裂,耐热性能也较好。(4)改进散热器放气塞、套管放气塞,使用真空蝶阀调查统计结果表明:散热器接口处、平面蝶阀帽子、散热器放气塞处渗漏油占总渗漏点的50。为此,对该类产品结构多次进行分析,终于发现在散热器放气塞和放气塞座配合上存在着加工制造中的严重缺陷,然而由于放气塞座是焊接在散热器上的现场无法加工或更换,只能对放气塞改进和更换。原来的放气塞不带止口,不能起到良好的密封效果,于是重新设计放气塞结构,加工了一批带保护挡圈的放气塞进行更换。同时对散热器放气塞配套的密封件尺寸进行修正,将密封件的压缩量控制在25,使密封更为完善、可靠。 为了改变普通板式蝶阀普遍渗漏油的局面,全部更换为沈阳变压器厂继电器联分厂生产的zf80型真空偏心蝶阀。真空蝶阀与普通蝶阀相比,其外观质量与内在质量有了很大改观,而且在其与变压器法兰接口处采用了双层密封,有效地解决了接口的渗漏油问题。同时改进了最易渗漏的套管放气塞结构,定制了各种规格的法兰盘螺栓代替普通螺栓作为套管放气塞,将接触面由原来未加工的平面改为光洁的圆锥面,使密封件包容在圆锥面内,密封更为有效。(5)实行了变压器整体附件试装检漏工作我厂编制和完善了变压器防渗漏油的装配工艺要求,规定了对变压器所有附件都要进行总装配。通过总装配,凡安装尺寸不对、密封不良、结构不合理等问题都必须在厂内解决,否则不准出厂。上述问题在厂内解决,比在现场处理既合理方便,又节约时间,不会延误送电。(6)加强监造力度,严格把住渗油关我厂在变压器订货技术协议中明确要求:变压器为无渗漏油产品,一旦发现渗漏油进行索赔与罚款。同时加强了对派出监造人员的培训,做到了在各道工序严格把关,尤其是附件预装检漏后进行巡回检查,发现不合理之处及时要求制造厂整改,从源头上堵住变压器渗漏油。(7)防止起重运输造成变压器渗漏我们积极采用了两条措施,一方面对起重工作人员加强变压器相关知识培训,使起重运输人员对变压器基本结构及承重部位有了一定的了解,同时规定变压器移位时千斤顶应避免顶在箱沿上而应顶在专用顶板上。针对现场无合适顶板或顶点位置无法承重现象,采取了过渡装置和多点支撑措施,减小了箱沿支撑面的压强,减少了箱沿变形情况。另一方面积极与上海电力设计院联系,在新变电站或老变电站改造设计中,适当放宽变压器承重基础尺寸。(8)加强对变压器组件的质量控制我厂加强了对阀门、散热器、有载分接开关等组件的质量控制。严格按照iso9000标准选择分承包方,并对实物加强评定和复验工作,使组件质量上一个档次。同时及时捕捉市场信息不惜成本采用国内质量上乘的组件,如采用专用球阀。 2努力方向采取上述措施后,在解决变压器渗漏油工作上取得了明显的效果,但这项工作是长期、持续的。相当部分的变压器在检查中虽然没有发现渗漏油现象,但此情况又能维持多久呢?经分析在如下几个方面还存在变压器渗漏油的隐患。1)变压器的渗漏油与变压器承载的负荷有关负荷越高,变压器油温越高,油的粘度也将变得越稀薄,更容易渗漏油;随着变压器油温的升高,隔膜式储油 柜的油面也将升高,一旦油面超过隔膜密封面,由于隔膜式储油柜存在着密封面大、密封结构不合理、法兰加工不平整等问题,将造成严重的渗漏油。现场发现几乎所有的隔膜式储油柜均存在着渗漏油的情况,而胶囊式储油柜却无一渗漏油。因此,从结构上改造隔膜式储油柜成为解决变压器渗漏油问题的当务之急。(2)变压器制造厂工艺水平低、组件质量差是造成变压器渗漏油的主要原因之一不仅放气塞、蝶阀、气体继电器渗漏油,而且法兰结合面之间不平行、法兰太单薄容易变形、安装尺寸公差太大、密封面未加工等情况,导致渗漏油。为此更换组件,采用波纹管软连接是消除法兰之间应力现场解决气体继电器的接口渗漏油的唯一有效途径。3)解决变压器渗漏油与密封技术有关目前虽然一部分密封面渗漏被环氧堵漏胶堵住了,表面上看起来并没有渗漏油现象,但据统计最多只能维持34个月。因此采用环氧堵漏胶堵漏只能应急,使用应慎重。同时使用堵漏胶产生影响散热、损坏组件等多种后果,所以堵漏胶不适宜用在密封面上,只能用于变压器油箱焊缝应急堵漏。4)良好的人员素质是解决变压器渗漏油问题的关键加强检修、安装、运行人员的专业技术的培训,提高人员素质是解决变压器渗漏油的当务之急。同时应选择有一定资质的队伍安装变压器。(5)对于密封面法兰缺乏一定的刚度、避免因表面凹凸不平、坑坑洼洼而造成渗漏油的变压器,应推广使用半液态密封胶在清除了漆膜、焊渣及油污的密封面上均匀涂上半液态密封胶,安放上合适的密封件,装配时在挤压下通过胶体流动,完全将密封表面的刀痕、凹坑及表面的不平度等缺陷填平,固化形成一个完整的、连续与密封表面接触的密封胶圈,挤出到结合面边缘的密封剂形成嵌边,起到二次密封作用。因此半液态密封胶对法兰未加工的密封有着良好的密封作用。6)完善变压器交接密封试验尤其对35kv及以上变压器现场附件安装完毕后,必须在储油柜上用气压或油压进行整体密封试验,在003mpa试验压力下不少于12h后应无渗漏油。浅谈现场变压器换油处理工艺卢德根变压器油作为变压器绝缘和冷却的重要介质,其质地的好坏直接关系到变压器的安全稳定运行。随着油质分析技术的提高,变压器油中的污染而使介损升高已成为人们关心的问题。在基建施工中,由于变压器到现场进行油化检测后发现油介损偏高,需要现场换油的成功经验简介如下: 1变压器的现场验收及常规处理 一般情况220kv变压器为充氮或充油运输两种方式,而110kv变压器普遍为充油运输。变压器及补充油运抵现场后,应尽快着手对油样进行检测,按规程简化检查如下项目:油外观、闪点、耐压、水溶性酸(ph值)、酸值、微水、色谱、油中含气量、介质损耗角(90),其中对于新安装的变压器油的数据易引起不合格的常有:(1)油微水超标,严重时引起油耐压达不到要求;(2)油色谱化验结果含有:c2h2微量或总的(某种)油中含气量偏离;(3)油介损超标准(0.7),而原因常不明。在现场安装施工中,前两项原因较明显,也容易处理。微水超标可以采用真空滤油机加热循环,再辅以板式滤油机过滤使油脱水和过滤杂质,经过二次循环后,可以达到标准。油中含有微量乙炔(c2h2)或含气量偏高,现也可采用1台或2台串联真空滤油机加热过滤循环,能在较短的时间合乎要求。而第3项油介质值超标,就很难用常规处理的方式来处理。在主变本体的试验中,有时也会伴随出现线圈绝缘电阻偏低,直流泄漏值增大,线圈对地的介质损耗偏大,因油介损的偏高而使主变整体绝缘变坏;为了彻底处理主变的绝缘油介损偏高,保证设备的安全运行,施工单位和生产运行部门均采用更换变压器油的方式来进行。 2变压器换油前的准备工作 (1)变压器换油前应制订换油过程的工艺流程,见图1所示;(2)准备排注油工作的设备,如真空滤油机、压力式滤油机、油罐、真空泵、小油泵及相应表计;(3)联系高纯氮气(99.99),110kv主变压器35瓶,220kv变压器68瓶,并事先倒置24h,排净氮气瓶内的凝露水;(4)主变钟罩起吊的机械设备、工器具,做好防雨、防火的措施。 3排油、冲洗 排油前从试验结果上看,若油介质小于2,本体排油油介损0.7按国标或厂方规定抽真空充干燥氮气0.020.03mpa抽真空排氮破真空本体底部残油化验油介损值跟踪抽真空注油破真空补油及扫尾工作清理底部残油油介损0.7油数据合格(油介损0.5)清理本体残油冲洗主变本体厂家发新油(含冲洗油)在现场可采取的方法为直接排油,如果油介损较高,则应事先考虑用吸附或其他方式降低油介损,再进行排油、换油工作。排油及冲洗工作,一般在现场新安装的主变压器与吊钟罩及本体芯部检查结合一起进行,以减少重复工作量。整个工序对天气的要求较高,按规程、铁芯暴露在空气中的时间不应超过下列规定:(1)空气相对湿度不超过65时为16h;(2)空气相对湿度6575时为12h;(3)空气相对湿度大于75时,不宜进行。本体油排干净后,如需进行吊罩检查芯部,则在吊罩后进行冲洗。如无需进行吊罩检查,则尽量打开所有安装孔,人孔闷板、再冲洗。冲洗和清理的部位,主要是:冲洗铁芯、油道、线圈、绝缘件、油箱壁以及一些死角。冲洗的顺序,应从上到下进行,以使油能充分浸透芯部的绝缘件等,并带出铁芯、油道、线圈、绝缘件等的表面附着油,该工序应进行23次,间隔宜30min以上,同时对底部的放油管、残油进行清理,尽量吸干残油。冲洗油的设备应用真空或压力式滤油机,再配合小油泵进行。对于线圈外侧加有围屏的结构应尽可能拆除围屏,冲洗线圈。冲洗工作完成后,应擦干箱壁及本体底部残油,并放尽冲洗用油。 4抽真空充氮、静滴及检测 冲洗工作和钟罩回装后,即应在规定的时间内进行抽真空工艺,真空表一般装在变压器顶部,同时安装上充氮装置,如图2所示。 图2抽真空工艺示意图a、b真空压力表,c麦氏真空表,d压力表,、真空阀,减压阀干燥筒内应装上干燥的硅胶,以吸附n2的水份,容积以n2瓶一半为宜。n2瓶应采用倒置放净凝结水的干燥气体,管子可采用氧气皮管,事先用n2吹扫管子,以使管内流畅无杂物。抽真空时,应关上阀,开阀和阀,先将油箱抽到0.02mpa,然后再按每小时均匀地增高0.0067mpa至110kv等级16000kva容量以下0.051mpa,16000kva以上0.08mpa,220kv等级为0.101mpa。如果厂家标准高于国标,则为保证质量按厂方要求进行,如220kv主变压器,有要求抽至残压133pa以下,保持10h以上,同时应注意箱体的变形情况。充氮时,应关闭阀、阀,停用真空装置。开启阀、阀,对主变本体进行充氮,充氮时速度不宜过快,以使n2充分气化。并吸附水份,干燥氮气。当氮气压力充至0.020.03mpa后,即停止充氮,并关闭阀、阀。对本体内的氮气应定时检查,如压力偏低则应及时补充。保持正常氮气压力,使芯部能在保证不受潮情况下,让浸渍在线圈内,附件内的油能充分随冲洗用油滴干。以保证换油质量,一般静滴时间维持在48h以上。取变压器底部残油(冲洗油和原油混合),进行油介损测试,如果残油介损与冲洗油介质相比,变化不大,则说明冲洗效果良好。如残油介损与冲洗前的油介损较接近,则说明本体内仍存有较多的受污染油,应采用继续抽真空排氨破真空冲洗排油程序进行。一般残油介损宜控制在0.7以下。 5破氮、抽真空本体注油 破氮的方式应采用真空泵抽出油箱内n2真空度也无需太高,再破真空,进行本体底部的残油处理。确认已干净后,封回所有闷板以及安装影响下一工序的附件如套管、套管ct等再进行抽真空,抽真空的真空度及时间要求同前抽真空工艺。本体注油应在真空度达到要求后进行,变压器油应从本体底部放油阀注油,油温高于变压器芯部温度,注油速度控制在100l/min以下,当油位离变压器箱顶部约100150mm时停止注油。注油过程中应始终维持着要求的真空度,停止注油后要继续抽真空110kv主变2h,220kv主变4h,待天气良好时破真空。 6破真空、补油及化验 保持真空度时间达到要求后,可直接破真空,并安装其余小附件如散热器、油枕等。并对油枕进行注油,油枕和散热器注油不可进行抽真空,但宜采用真空滤油机注油,排净油枕和散热器气体,补油到位稍偏高,静放24h以上取油样化验,做油化全套试验(简化、色谱、介损、微水),并定期跟踪有无变化 7结论 因主变压器油受污染后,要使变压器芯部所浸渍油完全更换,几乎是不可能,但通过以上油处理工艺后,我局所发现的几台油介损超标现象均得以处理而且效果明显,也无继续升高的趋势。试验结果,完全符合运行油4的标准。 作者单位:卢德根(金华电业局金华321001)变压器铁芯多点接地故障的分析判断斑竹整理 目前,我国制造的大中型变压器的铁芯都经一只套管引至油箱体外部接地。这是因为电力变压器在正常运行时,绕组周围存在电场,而铁芯和夹件等金属构件处于该电场之中,且场强各异。若铁芯不可靠接地,则产生充放电现象,损坏其固体和油绝缘。因此,铁芯必须有一点可靠接地。如果铁芯由于某种原因在某位置出现另一噗接地时,形成闭合回路,则正常接地的引线上就会有环流,这就是人们常说的铁芯多点接地故障。变压器的铁芯多点接地后,一方面会造成铁芯局部短路过热,严重时,会造成铁芯局部烧损,酿成更换铁芯硅钢片的重大故障;另一方面由于铁芯的正常接地线产生环流,引起变压器局部过热,也可能产生放电性故障。有关统计资料表明,因铁芯多点接地造成的事故占变压器总事故中的第三位。本文通过山东铝业公司电解铝厂zhsfp-27850/110型整流变现场吊芯检修实例,对变压器铁芯多点接地的分析判断和处理方法作一简单的介绍。1、铁芯多点接地故障的判断1.1 测量铁芯绝缘电阻如铁芯绝缘电阻为零或很低,则表明可能存在铁芯接地故障。1.2 监视接地线中环流对铁芯或夹件通过小套管引起接地的变压器,应监视接地线中是否有环泫,如有,则要使变压器停运,测量铁芯的绝缘电阻。1.3 气相色谱分析利用气相色谱分析法,对油中含气量进行分析,也是发现变压器铁芯接地最有效的方法。发现铁芯接地故障的变压器,其油色谱分析数据通常有以下特征:总烃含量超过“变压器油中溶解气体和判断导则”(gb7252-87)规定的注意值(150l/l),其中乙烯(c2h4)、甲烷(c2h2)含量低或不出现,即未达到规定注意值(5l/l)。若出现乙炔也超过注意值,则可能是动态接地故障。气相色谱分析法可与前两种方法综合起来,共同判定铁芯是否多点接地。2、现场简易处理方法2.1 不吊芯临时串接限流电阻运行中发现变压器铁芯多点接地故障后,为保证设备的安全,均需停电进行吊芯检查和处理。但对于系统暂不允许停电检查的,可采用在外引铁芯接地回路上串接电阻的临时应急措施,以限制铁芯接地回路的环流,防止故障进一步恶化。在串接电阻前,分别对铁芯接地回路的环流和开路电压进行测量,然后计算应串电阻阻值。注意所串电阻不宜太大,以保护铁芯基本处于地电位;也不宜太小,以能将环流限制在0.1a以下。同时还需注意所串电阻的热容量,以防烧坏电阻造成铁芯开路。2.2 吊芯检查(1)分部测量各夹件或穿心螺杆对铁芯(两分半式铁芯可将中间连片打开)的绝缘以逐步缩小故障查找范围。(2)检查各间隙、槽部重点部位有无螺帽、硅钢片、废料等金属杂物。(3)清除铁芯或绝缘垫片上的铁锈或油泥,对铁芯底部看不到的地方用铁丝进行清理。(4)对各间隙进行油冲洗或氮气冲吹清理。(5)用榔头敲击振动夹件,同时用摇表监测,看绝缘是否发生变化,查找并消除动态接地点。2.3 放电冲击法由于受变压器身在空气中暴露时间不宜太长的限制,以及变压器本身装配型式的制约,现场很多情况下无法找到其具体确切接地点,特别是由于铁锈焊渣悬浮、油泥沉积造成的多点接地,更是难于查找。此类故障可采用放电冲击法,这种方法要视现场具体情况、接地方式和接地程度,在吊芯或不吊芯状态下可进行。现场应用时,主要有电容直流电压法和电焊机交流电流法。电焊机交流电流法只适用于金属性接地故障,但电流不好控制,而现场这种情况极少,接地电阻大都几百欧以上。电容直流电压法现场取材较困难,操作不便且不安全,也不宜推广。根据笔者成功检修实例和现场经验,本文介绍一种安全可靠、操作简便,而且利于快速就地取材的方法。这种方法就是利用高压电气试验用升压变压器进行放电冲击。原理图见图1。现场应用时注意换算好二次电压,由于铁芯对地绝缘垫片很薄,故二次电压不能高于2500v。3、现场实例1999年9月26日,山东铝为公司电解铝厂3#整流变(zhsfp-27850/110)在吊芯大修时发现铁芯积铁锈很多,铁芯对夹件绝缘为0.15m(用500v摇表摇测),用数字万用表测得电阻值约为990k,故判定铁芯出现非金属性多点接地故障,处理步骤如下:(1)各绝缘薄弱重点部分外观检查,未发现有明显接地点和放电痕迹。(2)分部摇测两分半铁芯对夹件绝缘,其中一半绝缘为500m,另一半为0.15m,说明是一侧铁芯多点接地。(3)以接地一侧为重点,对铁芯和绝缘垫片的铁锈、油泥等杂物进行清理后,绝缘电阻无变化。(4)分别摇测现场能够测到的绝缘片的表面绝缘电阻,均未发现问题。(5)用榔头敲击振动夹件,同时用摇表监测绝缘电阻,没有发现变化。(6)在箱体内对铁芯进行了两次油泥冲洗后,接地现象仍未消失。(7)根据以上检查,分析认定是由于悬浮铁锈在电磁力的作用下,沉积在线圈内部夹件与铁芯的绝缘表面上形成稳定的非金属性接地故障,故决定用放电冲击法。利用现场电气试验班组的升压变压器进行慢慢升压放电(一定注意电流和电压的变化缓缓操作,电压不允许超过2500v)。当升至1000v左右时,听见线圈内部“砰”的一声,接着停止测量绝缘电阻,发现绝缘电阻升至3m。继续升至,当升至1650v左右时,又听见线圈内部“砰”的一声,停下测量绝缘电阻,发现绝缘电阻已上升到500m。至此,多点接地故障已消除。4、建议(1)运行中的变压器最好能在铁芯接地线上装设电流表,便于及时发现故障。特别是在放电冲击法消除接地现象后,更要加强监视,防止再次形成故障。(2)当出现铁芯多点接地故障时,要进行综合测定和全面分析检查后,再视现场具体情况选择处理方案,切不可盲目进行放电冲击或电焊烧除,以免造成绝缘损坏,使故障扩大。(3)每次吊芯大修时,一定要清洁油箱底部的油泥铁锈等杂物,并用油进行一次全面冲洗。(4)加强潜油泵及冷却器的检修,防止由于轴承的磨损或金属的剥落,引起变压器铁芯多点接地故障。10kv电压互感器单相接地与谐振的区别四川安岳县供电局 杨体(642350) 在电力系统中,电压互感器是一种仪用变压器,是一、二次系统的联络元件,它能正确地反映电气设备的正常运行和故障情况。在实际工作中,要正确区分电压互感器单相接地与谐振的区别。1、电压互感器单相接地在中性点不接地系统中,当系统发生单相接地故障时,系统仍可在故障状态下继续运行一段时间,有供电连续性高的优点。但不接地系统发生单相接地故障后,非故障相会产生较高的过电压,影响系统设备的绝缘性能和使用寿命,后果是出现更频繁的故障。(1)当中性点不接地系统中发生金属永久性单相接地时,如a相接地(针瓶、吊瓶、悬瓶、避雷器击穿,配电变压器绕相绝缘击穿等),则uan=0,非接地相ubn和ucn的电压表指示由正常的58v升高到线电压100v,电压互感器开中三角两端出现几十伏电压(正常时约3v),起动绝缘检查继电器发出接地信号并报警。(2)当系统发生非金属性短路接地时,即高电阻、电弧、树竹等单相接地。如a相发生接地,则uan的电压比正常相电压要低,其余两相ubn和ucn为58100v,电压互感器开口三角处两端有约70v电压,达到绝缘检查继电器起动值,发出接地信号并报警。(3)当系统发生单相接地时,故障点流过电容电流,末接地的两相相电压长高3,这将严重影响线路和电气设备的安全运行(此时电压互感器的励磁阻抗很大,故流过的电流很小)。但是,一旦接地故障点消除,非接地相在故障期间已充的电荷只能通过电压互感器高压线圈经其自身的接地点接入大地。在这一瞬间电压突变过程中,电压互感器高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和、由此构成相间串联谐振。由于接地电弧熄灭时间不同,故障点的切除就不一样。因此,不一定在每次出现单相接地故障时,电压互感器高压线圈中都要产生很大的激磁电流,其高压侧熔断器的情况也有所不同。2、电压互感器谐振在系统谐振时,电压互感器将产生过电压使电流激增,此时除了造成一欠侧熔断器熔断外,还将导致电压互感器烧毁。个别情况下,还会引起避雷器、变压器、断路器的套管发生闪络或爆炸。对于y0/y0电磁式电压互感器,在正常情况下线路发生的单相接地不会出现铁磁谐振过电压,只有在下列条件下,才可能引发铁磁谐振。(1)由于小型变压器的绝缘老化,以致线圈绝缘击穿引起匝间、层间短路。虽然电网在中性点不接地,单相接地电流不大,但较之变压器的一次负荷电流要大得多。当配电变压器内部发生单相接地故障时,故障电流通过抗电能力强的绝缘油对地放电,也会产生不稳定的电弧激发电网谐振。(2)随意带负荷拉开分支线路隔离刀闸,或带负荷拉开配电变压器的高压跌落保险,造成刀闸间弧光短路而引发谐振。(3)运行人员操作程序不规范,末拉开电压互感器高压侧刀闸,电压互感器直接向空母线送电,引起电压互感器铁磁谐振。(4)运行中的电压互感器谐振过电压可在三相同时发生,出现各相电压严重不平衡。将电压互感器负载全部退出,重新测量其结果与未退出负载前相同。检查电压互感器一次侧熔断器完好,在排除主变和电压互感器本身故障的可能性后,甩开电压互感器的避雷器,电压显示与未甩开避雷器之前相同,而且每次投入时的电压表指示数值均有变化。这是由于各相母线对地的相位不同,对地电容的大小有差异。另外,每次投入电压互感器时,各相的接触电阻以及同期性都随力量、速度的变化而变化,所以各相的谐振程度就不相同。(5)各相对地参数不平衡,加上合闸瞬间相位角的即性原因,导致一相至两相,甚至三相同时出现谐振现象。倘若发生的是分步谐振,因其频率较低,电压表会有周期性振动,但由于此时的感抗小,电压互感器的激磁电流很大,往往会将电压互感器烧毁。3、结论综上所述,单相接地与谐振故障现象有着根本区别。正常情况下,当系统发生单相接地故障时,仍可在故障状态下继续运行一段时间。铁磁谐振产生的过电压对设备的影响最大,切不可将电压互感器谐振误判为单相接地而延误了处理时间。并联电容器过电压保护二次接线的改进南昌有色冶金设计研究院蒋浩 在工矿企业的610kv配电,系统中,都装有并联电容器装置。我国并联电容器国家标准规定:工频长期过电压值最高不超过额定电压的11倍。因为电压过高,电容器内部游离增大,将产生局部放电;长时间在过电压下运行,电容器的无功输出功率大大增加,造成无功过补偿;电容器本身的有功损耗增大,发热量上升,最终导致热击穿。因此有关规程、均规定,在并联电容器回路应设置过电压保护。 1、存在问题 原一机部、西高所审定的全国通用电气装置标准图集356(10)kv变配电所二次接线(d267)中,电容器过电压保护接线见图1。图中kv为dj1112m型过电压继电器;kt为jsll型时间继电器。kv整定值一般为110v,返回系数为o8)即返回值为88v,比额定电压值100v还低。因此,kv实际上是一旦起动,就无法返回。而610kv电压短时升高,随即下降至正常电压值的现象较为常见,因此上述接线不能适应电压短时波动的影响。 2解决方法 将kv改为dj131200型,该继电器具有常开及常闭触点各一对。另外增加两个电阻r1、b2,其中r1选用zgll20型固定电阻,阻值21000;b2选用zgll20a型可调电阻,最大阻值为5000。并将接线图改为图2。 加入r1、b2的目的,在于kv动作后,降低kv线圈两侧的电压,以提高kv的返回系数。从图2可知,kv动作后其线圈电压为:o88un88(v) 式中:rkvkv线圈阻抗,约10000欧 un-额定电压 r1、r2两者串联后阻值调至及kv的25左右,为2500欧。ukv恰好为kv的返回值。即电网电压低于11倍的额定值时,kv触点返回,保护不动作;如长时间高于11倍额定值,保护带延时动作于跳闸。 r2可调电阻的作用是使用户可根据自身的情况调整过电压时的返回动作值。在正常运行时,r1和r2被kv的常闭触点短接,并不消耗电能。在过电压动作后,仅短时消耗电能。干式变压器的工程选型及应用 张勖成 曾庆赣1、干式变压器的温度控制系统 干式变压器的安全运行和使用寿命,很大程度上取决于变压器绕组绝缘的安全可靠。绕组温度超过绝缘耐受温度使绝缘破坏,是导致变压器不能正常工作的主要原因之一,因此对变压器的运行温度的监测及其报警控制是十分重要的,今对ttc-300系列温控系统作一简介。 (1)风机自动控制:通过预埋在低压绕组最热处的pt100热敏测温电阻测取温度信号。变压器负荷增大,运行温度上升,当绕组温度达110时,系统自动启动风机冷却;当绕组温度低至90时,系统自动停止风机。(2)超温报警、跳闸:通过预埋在低压绕组中的ptc非线性热敏测温电阻采集绕组或铁心温度信号。当变压器绕组温度继续升高,若达到155时,系统输出超温报警信号;若温度继续上升达170,变压器已不能继续运行,须向二次保护回路输送超温跳闸信号,应使变压器迅速跳闸。 (3)温度显示系统:通过预埋在低压绕组中的pt100热敏电阻测取温度变化值,直接显示各相绕组温度(三相巡检及最大值显示,并可记录历史最高温度),可将最高温度以420ma模拟量输出,若需传输至远方(距离可达1200m)计算机,可加配计算机接口,1只变送器,最多可同时监测31台变压器。系统的超温报警、跳闸也可由pt100热敏传感电阻信号动作,进一步提高温控保护系统的可靠性。2、干式变压器的防护方式 根据使用环境特征及防护要求,干式变压器可选

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论